CHOICE BASED CREDIT SYSTEM - LEARNING OUTCOMES-BASED CURRICULUM FRAMEWORK											
Programme	M.Sc.										
Programme Code	22										
Duration	2 years for PG										
Programme	PO1: Problem Solving Skill										
Outcomes	Apply knowledge of Management theories and Human										
(Pos)	Resource practices to solve business problems through										
	research in Global context.										
	PO2: Decision Making Skill										
	Foster analytical and critical thinking abilities for data-based										
	decision-making.										
	PO3: Ethical Value										
	Ability to incorporate quality, ethical and legal value-based										
	perspectives to all organizational activities.										
	Ability to develop communication managerial and interpersonal										
	Ability to develop communication, managerial and interpersonal skills										
	PO5: Individual and Team Leadership Skill										
	Capability to lead themselves and the team to achieve										
	organizational goals.										
	PO6: Employability Skill										
	Inculcate contemporary business practices to enhance										
	employability skills in the competitive environment.										
	PO7: Entrepreneurial Skill										
	Equip with skills and competencies to become an										
	entrepreneur.										
	POS: Contribution to Society										
	society										
	PO 9 Multicultural competence										
	Possess knowledge of the values and beliefs of multiple										
	cultures and										
	a global perspective.										
	PO 10: Moral and ethical awareness/reasoning										
	Ability to embrace moral/ethical values in conducting one's										
	life.										
Programme	PSO1 – Placement										
Specific	To prepare the students who will demonstrate respectful										
Outcomes	engagement with others' ideas, behaviors, beliefs and apply										
(PSOs)	PSO 2 - Entrepreneur										
	To create effective entrepreneurs by enhancing their critical										
	thinking, problem solving, decision making and leadership skill										
	that will facilitate startups and high potential organizations.										
	PSO3 – Research and Development										
	Design and implement HR systems and practices grounded in										
	research that comply with employment laws, leading the										
	organization towards growth and development.										
	PSO4 – Contribution to Business World										
	To produce employable, ethical and innovative professionals to										
	sustain in the dynamic business world.										
	PSO 5 - Contribution to the Society										
	To contribute to the development of the society by collaborating										

with stakeholders for mutual benefit.

Part

CC - 1

CHOICE BASED CREDIT SYSTEM - LEARNING OUTCOMES-BASED **CURRICULUM FRAMEWORK**

PG Chemistry

	Semester I									
	Course	Code								
	Organic Reaction Mechanism – I	232204101								
	Structure and Bonding in Inorganic Compounds	232204102								
	Organic Chemistry Practical	232204103								
	Pharmaceutical Chemistry	232204104								
5)	Nano Materials and Nano Technology	232204105								

	CC – 2	Structure and Bonding in Inorganic	232204102	4	5			
	CC = 3	Organic Chemistry Practical	232204103	4	5			
Α	FC –I	Pharmaceutical Chemistry	232204103	-	5			
	(Generic/DS)	Nano Materials and Nano Technology	232204104	3	5			
	(Generie/DD)	Flectro Chemistry	232204105					
	Elective - II	Molecular Spectroscopy	232204100	3	5			
	SEC I	Preparation of Consumer products Lab	232204107	2	3			
В	AECC 1 –	Chemistry in Consumer Products	232204108	2	2			
	Soft Skill				_			
	Total			22	30			
		SEMESTER II			-			
	CC-4	Organic Reaction Mechanism II	232204201	4	5			
	CC-5	Physical Chemistry – I	232204202	4	5			
	<u>CC – 6</u>	Inorganic Chemistry Practicals	232204203	4	5			
Α	EC – III	Medicinal Chemistry	232204204	3	5			
		Green Chemistry	232204205					
	EC - IV	Bio Inorganic Chemistry	232204206	3	5			
		Material Science	232204207	5	5			
P	SEC – II	Drugs and Cosmetics	232204208	2	3			
Б	AECC 2	AECC 2 Food Preservation 232204209						
				22	30			
		SEMESTER III						
	CC - 7	Organic Synthesis and Photochemistry	232204301	4	5			
	CC – 8	Coordination Chemistry – I	232204302	4	5			
	CC – 9	Physical Chemistry Practical	232204303	4	5			
Α		Pharmacognosy and Phytochemistry	232204304					
	EC - V	Biomolecules and Heterocyclic	232204305	3	5			
	Core	Core Industry Module	232204306	3	4			
	0.010	Professional Communication Skill (Term		2				
	SEC – III	Paper & Seminar Presentation)	232204307	2	4			
В	AECC 2	Research Tools and Techniques in	232204308	2	2			
	AECC – 3	Chemistry		2	Z			
	Internship	Internship / Industrial Activity	232204309	2	-			
				24	30			
		SEMESTER IV	•					
	CC - 10	Coordination Chemistry - II	232204401	4	5			
	CC – 11	Physical Chemistry – II	232204402	4	5			
А	CC - 12	Analytical Instrumentation Technique Practicals	232204403	4	5			
	CC – 13	Project with Viva Voce	232204404	3	4			
		Professional Competency Skill	232204405	2	4			
В		enhancement course	222201103		•			
	AECC – 4	Chemical Conservation	232204406	2	2			

Hrs

5

Cr.

4

С	EA		Exter	nsion Activ	vity			232	2204407		1			
	Т	otal									24	30		
Tit	le of th	e Course		ORGAN	ORGANIC REACTION MECHANISM - I									
Ca	tegory	Core	- 1	Year Semester	I I	Credits	4		Course Code	ourse 232204		204101		
Ins	Instructional Hours			Lecture	Tutorial	Lab Practice	Total	CI	A Exte	ernal		Total		
per	week			4	1		5	25	5 7	5		100		
	Learning Objectives													
	e To	comprehe	nd the	techniques	s in the de	termination	of reac	tion	mechanis	sms.	•			
	∠ To	understand	d the c	oncept of s	stereocher	nistry invol	ved in o	organ	ic compo	ound	s.			
	∠ To	correlate	and a	ppreciate	the differ	ences invol	ved in	the	various	type	s of	organic		
	reac	tion mech	anism	S.	utos for ti	a proporati	onofo	raani		unda				
	£ 10	lesign tea	sible s	ynuneue ne	outes for ti			gam	e compo	unus	N	o. of		
U	NIT				Deta	ils					Peri	ods for		
				1 6 5	•						the	Unit		
		Control: Reaction	Metho interm Therr	ods of D ediates, 7 nodynamic	The trans	tion of R ition state, netic requi	Reaction React rements	n M tion s of	coordina reaction	m: ate				
	Ē	Hammond	postu	late. Meth	ods of de	termining n	nechani	sm:	non-kine	tic				
	n	nethods -	produ	ct analysi	s, determ	ination of i	interme	diate	s-isolatio	on,		15		
	d	etection,	and t	rapping. (Cross-ovei	experime	nts, iso	topic	labellii	ng,		10		
	r	elation of	f rate	and stered	b chemica hanism H	al evidence	tructure	enc on	reactivi	- tv·				
	ŀ	Hammett	and Ta	aft equation	ons. Linea	r free ener	gy rela	tions	hip, part	ial				
	r	ate factor,	substi	tuent and	reaction co	onstants.			1 1					
	II U	JNIT-II:	Aron	natic and	d Alipha	tic Electr	ophilic	Su	bstitutio	n:				
	r f	ompound	y: Aro s and	annuler	in benzer	non-d natic elec	enzeno trophili	ia, n c si	ubstitutio	nc n				
	Ċ	Drientation	1 and	reactivi	ty of d	i- and po	olysubs	titute	d phen	ol,				
	n	itrobenze	ne a	nd halot	enzene.	Reactions	invol	lving	nitrog	en		15		
	e	lectrophil	es: nit	ration, nit	rosation a	and diazoni	ium co	uplin	g; Sulph	ur	IF IS			
	e	lectrophil	es: su	lphonation	i; Haloge	n electroph	iles: c	hlori	nation a	nd				
	a	nd arvl	ation	reaction	s. Aliph	atic elec	trophili	c s	i, acylati substituti	on				
	Ν	/lechanisn	ns: SE	2 and SEi,	SE1- Med	chanism and	l evider	nces.						
	Π	INIT-III: A	romat	ic and Al	iphatic N	ucleophilic	Substit	ution	: Aroma	tic				
	r	ucleophili	c sub	stitution:	Mechanis	sms - S _N A	Ar, S _N 1	an	d Benzy	ne				
	n	nechanism	ns - Ev	idences - I	Reactivity,	Effect of s	tructure	e, lea	iving gro	up				
	C	nd attack	ing nu	cleophile.	Reactions:	Oxygen an	d Sulph	ur-nı	ucleophil	es,				
	E	lucherer a	nd Ros	senmund r	eactions, <i>\</i>	on Richter,	Somme	elet-	Hauser a	nd		15		
	S	miles rea	rrange	ments. $S_N 1$, ion pair, $S_N 2$ mechanisms and evidences. 15								15		
	4	liphatic	nucleo	philic sub	stitutions	at an al	lylic co	irbon	, alipha	tic				
	t	rigonal ca	rbon d	and vinyl c	arbon.S _N 1	, S _N 2, S _N i, a	nd S _E 1	mech	hanism a	nd				
	ϵ	vidences,	Swair	n- Scott, (Grunwald-	Winstein re	elations	hip -	Ambide	ent				
	n	ucleophile	es.											

IV UI an isc ba dia du me fo: Pr Ca Cc bin cy an rac sy	and chiral y – axis, planc, center, architaling axis of symmetry. Optical isomerism due to asymmetric and dissymmetric molecules with C, N, S based chiral centers. Optical purity, prochirality, enantiotopic and diastereotopic atoms, groups, faces, axial and planar chirality, chirality due to helical shape, methods of determining theconfiguration. Racemic modifications: Racemization by thermal, anion, cation, reversible formation, epimerization, mutarotation. D, L system, Cram's and Prelog's rules: R, S-notations, proR, proS, side phase and re phase Cahn-Ingold-Prelog rules, absolute and relative configurations. Configurations of allenes, spiranes, biphenyls, cyclooctene, helicene, binaphthyls, ansa and cyclophanic compounds, exo-cyclic alkylidene- cycloalkanes. Topicity and prostereoisomerism, chiral shift reagents and chiral solvating reagents. Criteria for optical purity: Resolution of racemic modifications, asymmetric transformations, asymmetric synthesis, destruction. Stereoselective and stereospecific synthesis.							
V UI sy pa Cu ma rea po op op oc	 synthesis, destruction. Stereoselective and stereospecific synthesis. V UNIT-V: Stereochemistry-II: Conformation and reactivity of acyclic systems, intramolecular rearrangements, neighbouring group participation, chemical consequence of conformational equilibrium - Curtin-Hammett Principle. Stability of five and six-membered rings: mono-, di- and polysubstituted cyclohexanes, conformation and reactivity in cyclohexane systems. Fused and bridged rings: bicyclic, poly cyclic systems, decalins and Brett's rule. Optical rotation and optical rotatory dispersion, conformational asymmetry, ORD curves, octant rule, configuration and conformation, Cotton effect, axial haloketone rule and determination of configuration. 							
	Course Outcomes							
Course Outcomes	On completion of this course, students will;							
C01	To recall the basic principles of organic chemistry.							
CO2	To understand the formation and detection of reaction intermedia reactions.	tes of organic						
CO3	To predict the reaction mechanism of organic reactions and stere organic compounds.	eochemistry of						
CO4	To apply the principles of kinetic and non-kinetic methods to mechanism of reactions.	determine the						
CO5	To design and synthesize new organic compounds by constereochemistry of organic compounds.	orrelating the						

- 1. J. March and M. Smith, Advanced Organic Chemistry, 5th edition, John-Wiley and Sons.2001.
- 2. E. S. Gould, Mechanism and Structure in Organic Chemistry, Holt, Rinehart and Winston Inc., 1959.
- 3. P.S.Kalsi, Stereochemistry of carbon compounds, 8th edition, New Age International Publishers, 2015.
- 4. P. Y. Bruice, Organic Chemistry, 7th edn, Prentice Hall, 2013.
- J.Clayden, N. Greeves, S. Warren, Organic Compounds, 2ndedition, Oxford University Press, 2014.

References Books

(Latest editions, and the style as given below must be strictly adhered to)

- 1. F.A. Carey and R.J. Sundberg, Advanced Organic Chemistry Part-A and B, 5th edition, Kluwer Academic / Plenum Publishers, 2007.
- 2. D. G. Morris, Stereochemistry, RSC Tutorial Chemistry Text 1, 2001.
- 3. N.S. Isaacs, Physical Organic Chemistry, ELBS, Longman, UK, 1987.
- 4. E. L. Eliel, Stereochemistry of Carbon Compounds, Tata-McGraw Hill, 2000.
- 5. I. L. Finar, Organic chemistry, Vol-1 & 2, 6th edition, Pearson Education Asia, 2004.

Web Resources

01. https://sites.google.com/site/chemistryebookscollection02/home/organic-chemistry/organic 02. https://www.organic-chemistry.org/

Mapping with Programme Outcomes:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10
CO1	S	S	S	S	М	S	S	S	S	Μ
CO2	М	S	S	S	S	М	S	S	S	S
CO3	S	S	М	S	S	S	S	М	S	S
CO4	М	S	S	S	S	М	S	S	S	S
CO5	М	S	М	S	S	М	S	М	S	S

3 – Strong, 2 – Medium , 1 - Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of t	he Course	STRUCT COMPO	TURE A	ND BONI	DING II	N INC	ORGANI	С		
		Vear	I			C	ourse			
Category	Core – 2	Semester	I	Credits	4	C	ode	232204	102	
Instructi	onal Hours	Lecture	Tutorial	Lab Practice	Total	CIA	Externa	al To	otal	
per week		4	1		5	25	75	10	00	
]	Learning	g Objective	S					
ま To ま To ま To ま To ま To	 To determine the structural properties of main group compounds and cluster To gain fundamental knowledge on the structural aspects of ionic crystals. To familiarize various diffraction and microscopic techniques. To study the effect of point defects and line defects in ionic crystals. To evaluate the structural aspects of solids. 									
UNIT			Deta	ils				No. o Periods the Ui	of s for nit	
Ι	UNIT-I: Structure of main group compounds and clusters: VB theory – Effect of lone pair and electronegativity of atoms (Bent's rule) on the geometry of the molecules; Structure of silicates - applications of Paulings rule of electrovalence - isomorphous replacements in silicates – ortho, meta and pyro silicates – one dimensional, two dimensional and three-dimensional silicates. Structure of silicones, Structural and bonding features of B-N, S-N and P-N compounds; Poly acids – types, examples and structures; Borane cluster: Structural features of closo, nido, arachano and klado; carboranes, hetero and metalloboranes; Wade's rule to predict the structure of borane cluster; main group clusters –zintl ions and mno15									
Π	UNIT-II: Solid in simple, hexa Radius ratio, operations in c space group; S equation - Kapu	g of ions l lattice, mmetry oup and n-Lande	15							
III	UNIT-III: Solid state chemistry – II: Structural features of the crystal systems: Rock salt, zinc blende & wurtzite, fluorite and anti-fluorite, rutile and anatase, cadmium iodide and nickel arsenide; Spinels -normal and inverse types and perovskite structures. Crystal Growth methods: From melt and solution (hydrothermal, sol-gel methods) – principles and examples								,	
IV	UNIT-IV: Techniques in solid state chemistry: X-ray diffraction technique: Bragg's law, Powder diffraction method – Principle and Instrumentation; Interpretation of XRD data – JCPDS files, Phase purity, Scherrer formula, lattice constants calculation; Systematic absence of reflections; Electron diffraction technique – principle, instrumentation and application. Electron microscopy – difference between optical and electron microscopy, theory, principle, instrumentation, sampling methods and applications of SEM and TEM									
V	UNIT-V: Ban Band theory – and semicondu in crystals – po deficient) and t	d theory features an ctors, Intrir int defects heir effect	and de d its app sic and (Schottky on the ele	efects in a plication of extrinsic se v, Frenkel, 1 ectrical and	solids conduct micondu netal exe optical	ors, ir ictors; cess ai proper	nsulators Defects nd metal ty, laser	15		

and phosphors; Linear defects and its effects due to dislocations.

	Course Outcomes									
Course	On completion of this course, Students will be able									
Outcomes										
CO1	Predict the geometry of main group compounds and clusters.									
CO2	Explain about the packing of ions in crystals and apply the radius ratio rule to predict the coordination number of cations.									
CO3	Understand the various types of ionic crystal systems and analyze their structural features.									
CO4	Explain the crystal growth methods.									
CO5	To understand the principles of diffraction techniques and microscopic techniques.									

Text Books (Latest Editions)
01. A R West, Solid state Chemistry and its applications, 2ndEdition (Students Edition),
John Wiley & Sons Ltd., 2014.
02. A K Bhagi and G R Chatwal, A textbook of inorganic polymers, Himalaya Publishing
House, 2001.
03. L Smart, E Moore, Solid State Chemistry – An Introduction, 4th Edition, CRC Press,
2012.
04. K. F. Purcell and J. C. Kotz, Inorganic Chemistry; W.B. Saunders company:
Philadelphia, 1977.
05. J. E. Huheey, E. A. Keiter and R. L. Keiter, Inorganic Chemistry; 4th ed.; Harper and
Row: NewYork, 1983.
References Books
(Latest editions, and the style as given below must be strictly adhered to)
1. D. E. Douglas, D.H. McDaniel and J. J. Alexander, Concepts and Models in Inorganic
Chemistry, 3rd Ed, 1994.
2. R J D Tilley, Understanding Solids - The Science of Materials, 2 nd edition, Wiley
Publication, 2013.
3. C N R Rao and J Gopalakrishnan, New Directions in Solid State Chemistry, 2 nd Edition
Cambridge University Press, 199.
4. T. Moeller, Inorganic Chemistry, A Modern Introduction; John Wiley: New York, 1982.
5. D. F. Shriver, P. W. Atkins and C.H. Langford; Inorganic Chemistry; 3rd ed.; Oxford
University Press: London, 2001.
Web Resources
01.https://ocw.mit.edu/courses/3-091-introduction-to-solid-state-chemistry-fall-
2018/video_galleries/lecture-videos/
Mapping with Programme Outcomes:

	Mapping with Flogramme Outcomes:											
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10		
CO1	S	S	S	S	М	S	S	S	S	М		
CO2	М	S	S	S	S	М	S	S	S	S		
CO3	S	S	М	S	S	S	S	М	S	S		
CO4	М	S	S	S	S	М	S	S	S	S		
CO5	М	S	М	S	S	М	S	М	S	S		

3 – Strong, 2 – Medium , 1 - Low Mapping with Programme Specific Outcomes:

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15

Department of Chemistry

Weighted Course C	I percentage of contribution to Pos3.03.03.03.03.0												
		30					L						l
Title of th	ne Course	ORG	ANI	IC CI	HE	MISTI	RY	PRAC	TICAL	,			
		X 7		T									
Category	Core - 3	Y ear Seme	ester	I		Cred	its	4	C	ours ode	se	2322	204103
Instructio	onal Hours	Lectu	re	Tutori	ial	Lab Proof		Total	CIA	E	xternal		Total
per week		-		1		4	ce	5	25		75		100
]	Learn	ning	g Objec	tive	s					
لا ⊠ cor	understand the c	concep	t of :	separa	atio	n, quali	tati	ve analy	ysis and	l pre	eparatio	on o	f organic
ي To and	develop analytic l ternary organic	al skil mixtur	1 in t es.	the ha	ndl	ing of o	cher	nical re	agents	for	separat	tion	of binary
æ To	analyze the separ	rated o	rgani	ic con	npo	nents s	ste	maticall	y and d	leriv	atize tl	hem	suitably.
🖉 То	construct suitable	e expe	rimei	ntal se	- etun	for the	org	vanic pre	eparatic	ons i	nvolvii	ng tw	vo stages.
∠ To	experiment diffe	rent pu	irific	ation	and	drying	tecl	hniques	for the	con	npound	l pro	cessing.
UNIT				D	etai	ils						N Peri the	o. of ods for e Unit
Ι	Separation and	analyc	ic.										
		anarys	15.										
4	A. Two compone	nt mix	tures	s.									
TT	B. Three compon	ent mi	xture	es.									
11	sumations.												
	a) Estimati	on of l	Pheno	ol (bro	omi	nation)							
	b) Estimati	on of A	Anili	ne (br	om	ination)							
	c) Estimati	on of I	Ethyl	meth	yl k	tetone (iodi	metry)					
	d) Estimati	on of (ose (re	edo:	(indim							
	f) Estimati	on of λ	Ascol	roic a	cia vitro		ury)) duction)				
	g) Estimati	on of (Glyci	ine (ac	ridi	metry)		auction)				
	h) Estimati	on of l	Form	alin (i	iodi	metry)							
	i) Estimati	on of A	Acety	yl grou	up i	n ester	(alk	alimetry	v)				
	j) Estimati	on of l	Hydro	oxyl g	grou	ıp (acet	ylati	ion) .					
	k) Estimati	on of A	Amin	no gro	up ((acetyla	tion	ı)					
III	Гwo stage prepa	ratior	ns:										
	a) <i>p</i> -Bromoa	acetani	lide f	from a	anil	ine							
	b) p -Nitroan	iiline f	rom a	acetan	11110	le							
	$\begin{array}{c} c) 1, 5, 5-1 \text{ fill} \\ d) \text{ A cottyl col} \end{array}$	romod	enze	ne from	m a	unnine thyl col	ioul	lata					
	e) Benzilic a	acid fro	m he	enzoir	n me	ulyi sa	leyi	late					
	f) <i>m</i> -Nitroar	niline f	rom	nitrob	n enz	ene							
	g) <i>m</i> -Nitrob	enzoic	acid	from	me	thyl bei	ızoa	ate					
L L				Cou	irse	Outco	mes	;					
Course	On completio	n of th	is co	urse. s	stud	lents wi	11:						
Outcome	s			, .			- 7						
CO1	To recall the	e basi	c pr	incipl	es	of org	anic	separa	ation, c	Juali	itative	anal	ysis and
	preparation.		-	-				-					
CO2	To explain th	e meth	o boi	f sepa	arati	on and	ana	lysis of	separat	ted o	organic	mix	tures and
002	convert them	as der	ivativ	ves by	/ sui	itable p	repa	ration r	nethod.				
CO3	To determine	e the c	hara	cterist	tics	of sep	arat	ion of o	organic	cor	npound	ds by	y various

	chemical reactions.
CO4	To develop strategies to separate, analyze and prepare organic compounds.
COS	To formulate a method of separation, analysis of organic mixtures and design
05	suitable procedure for organic preparations.

	Text Books (Latest Editions)									
1.	A R West, Solid state Chemistry and its applications, 2ndEdition (Students Edition), John									
	Wiley & Sons Ltd., 2014.									
2.	A K Bhagi and G R Chatwal, A textbook of inorganic polymers, Himalaya Publishing									
	House, 2001.									
3.	L Smart, E Moore, Solid State Chemistry – An Introduction, 4 th Edition, CRC Press, 2012.									
	References Books									
	(Latest editions, and the style as given below must be strictly adhered to)									
1.	D. E. Douglas, D.H. McDaniel and J. J. Alexander, Concepts and Models in Inorganic									
	Chemistry, 3rd Ed, 1994.									
2.	R J D Tilley, Understanding Solids - The Science of Materials, 2 nd edition, Wiley									
	Publication, 2013.									
3.	C N R Rao and J Gopalakrishnan, New Directions in Solid State Chemistry, 2 nd Edition,									
	Cambridge University Press, 199.									
	Web Resources									

01. https://ocw.mit.edu/courses/3-091-introduction-to-solid-state-chemistry-fall-2018/video_galleries/lecture-videos/

Mapping with Programme Outcomes:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10			
CO1	S	S	S	S	М	S	S	S	S	М			
CO2	М	S	S	S	S	М	S	S	S	S			
CO3	S	S	М	S	S	S	S	Μ	S	S			
CO4	М	S	S	S	S	М	S	S	S	S			
CO5	М	S	М	S	S	М	S	Μ	S	S			
			3 -	– Strong	g, 2 - M	edium ,	1 - Low	7					

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of t	he Course	PHARM	IACEUT	ICAL CH	EMIST	RY				
	-		-							
Category	EC – I	Year Semester	I r I	Credits	3	C C	ourse ode	23	22041	04
Instructi	onal Hours	Lecture	Tutorial	Lab Practice	Total	CIA	Ex	xternal		Total
per week		4	1		5	25		75		100
			Lear	ning Objec	tives					
ø To	understand the a	dvanced c	oncepts of	f pharmaceu	tical che	emistry	'.			
∠ To	recall the princip	ple and bio	logical fu	nctions of v	arious di	rugs.				
∠ To	train the student	s to know	the import	tance as we	ll the cor	iseque	nces of v	various dr	ugs.	
× 10	have knowledge	on the val	nous analy	ysis and tech	nniques.	~				
UNIT	UNIT Details									o. of ods for e Unit
	molecule: physical properties. Refractive index- Definition, explanation formula, importance, determination, specific & molar refraction. Optical activity/rotation- monochromatic & polychromatic light, optical activity, angle of rotation, specific rotation examples, measurement of optical activity Dielectric constant & Induced Polarization- Dielectric constant explanation & determination. Rheology of pharmaceutical systems: Introduction, Definition Applications, concept of viscosity, Newton's law of flow, Kinematic, Relative Specific, Reduced & Intrinsic viscosity. Newtonian system, non-Newtonian system- Plastic flow, Pseudoplastic flow, Dilatent flow. Viscosity measurements- selection of viscometer for Newtonian and non-Newtonian system.									15
Π	 II UNIT-II: Isotopic Dilution analysis: principle and applications, Neutron activation analysis: Principle, advantages and limitations, Scintillation counters: Body scanning. Introduction to radiopharmaceuticals. Properties of various types of radiopharmaceuticals, Radiopharmaceuticals as diagnostics, as therapeutics, for research and sterilization. Physico Chemical Properties and drug action. Physico chemical properties of drugs (a) Partition coefficient, (b) 									15
III	 solubility (c) surface activity, (d) degree of ionization. UNIT-III: Drug dosage and product development: Introduction to drug dosage Forms & Drug Delivery system – Definition of Common terms. Drug Regulation and control, pharmacopoeias formularies, sources of drug, drug nomenclature, routes of administration of drugs products, need for a dosage form, classification of dosage forms. Drug dosage and product development. Introduction to drug dosage Forms & Drug Delivery system – Definition of Common terms. Drug Regulation and control, pharmacopoeias formularies, sources of drug, drug nomenclature, routes of administration of dosage forms & Drug Delivery system – Definition of Common terms. Drug Regulation and control, pharmacopoeias formularies, sources of drug, drug nomenclature, routes of administration of drugs products need for a dosage form classification of dosage forms. 									15
IV	UNIT-IV: Deve drug design, the compounds. St bioactivity, reso considerations, t drug activity, occ structure activit interactions, th parameters, lipop steric parameters	lopment of research f ructure-Ac onance, in biological cupancy th ty relations e additiv bhilicity pa , chelation	of new du for lead co ctivity R nductive properties eory, rate ship (QSA rity of urameters, paramete	rugs: Introd ompounds, celationship effect, iso of simple theory, ind aR): Develo group co- electronic pers, redox po	luction, molecula (SAR) terism, function uced-fit pment o ntributio paramete otential, i	procect ar mod b: Fa bioiso nal gro theory f QSA ns, p r, ioniz ndicat	lure foll ification ctors of sterism, ups, the ,4.3 Qua R, drug hysico-c zation co or-varial	owed in a of lead effecting spatial eories of antitative receptor chemical onstants, bles.		15

	V	UNIT-V	V: Com	puters i	n Phari	naceuti	cal Che	mistry:	Need of	f compu	ters for	
		chemist	ry. Con	nputers	for An	alytical	Chemis	sts-Intro	duction	to con	nputers:	
		Organiz	ation of	comput	ers, CPI	J, Comp	outer me	mory, I/	O devic	es, info	rmation	. –
		storage,	softwa	are con	ponents	s. Appl	ication	of con	nputers	in che	emistry:	15
		Program	nming in	high le	vel lang	uage (C-	+) to hai	ndle vari	ous nun	nerical n	nethods	
		in chem	istry – le	east squa	are fit, so	olution to	o simult	aneous e	equation	s, interp	olation,	
	extrapolation, data smoothing, numerical differentiation and integrations.											
	Course Outcomes											
0	Course On completion of this course, students will be able											
U	Outcomes On completion of this course, students will be able CO1 To identify the suitable drugs for various diseases											
	$\frac{\text{CO1}}{\text{CO2}}$		apply the	nrincin	les of va	s ioi vai arious dr	1003 013	n and dr	no desio	m		
	CO2 To apply the principles of various drug action and drug design. CO3 To acquire the knowledge on product development based on SAR											
	CO3 To acquire the knowledge on product development based on SAR.											
	C05	 10 apply the knowledge on applications of computers in chemistry. To synthesize new drugs after understanding the concepts SAR 										
	Text Books (Latest Editions)											
1	Physical Chemistry- Bahl and Tuli.											
2	2. Text Book of Physical Pharmaceutics, IInd edition, Vallabh Prakashan C.V.S.											
	Subr	amanyar	n.	•								
3	3. Medicinal Chemistry (Organic Pharmaceutical Chemistry), G.R. Chatwal, Himalaya											
	Publi	shing ho	ouse.						•			
4	. Instru	umental	method	of Analy	ysis: Hu	bert H, V	Willard,	7th editi	on.			
5	. Textl	book of	Pharma	aceutical	Chemi	stry by,	Jayshre	e Ghos	h, S. Cl	hand &	compan	y Ltd.
	Phar	maceutic	al Chen	nistry by	Dr. S. I	akshmi	, Sultan	chand &	Sons.			
					R	eference	s Books	1				
		(Lates	t editior	ns, and t	he style	as giver	below	must be	strictly	adhere	d to)	
	01. C	omputer	s in chei	mistry, k	K.V. Rar	nan, Tat	a Mc.Gı	aw-Hill	, 1993.			
	02. C	omputer	s for Ch	emists,	S.K Pur	ndir, Ans	shu bans	sal, A pr	agate pr	akashar	n., 2 nd e	edition,
	Ν	ew age i	nternati	onal (P)	limited,	New De	elhi.					
	03. Pl	nysical F	harmac	y and Pł	narmace	utical Sc	iences t	y Marti	ns, Patri	ck J. Siı	1ko, Lipp	pincott.
	W	'illiam a	nd Wilk	ins.								
	04. C	ooper an	d Gunn	's Tutori	al Pharr	nacy ,6tl	n editior	by S.J.	Carter, (CBS Pul	blisher L	td.
	05. A	nsels ph	armaceu	itical Do	sage for	ms and l	Drug De	livery S	ystem b	y Allen	Popvich	and
	A	nsel, In	dian edi	tion-B.I.	Publica	tion Pvt.	. Ltd.					
					V	Veb Res	ources					
h	ttps://	/www.i	ncbi.nl	m.nih.	gov/bo	oks/N	BK482	447/				
h	ttps://	/traini	ng.seer	.cance	r.gov/t	reatme	ent/ch	emothe	erapy/t	ypes.h	tml	
г	Mapping with Programme Outcomes:											
		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	
	CO1	S	S	S	S	Μ	S	S	S	S	Μ	
	CO2	Μ	S	S	S	S	Μ	S	S	S	S	
	CO3	S	S	Μ	S	S	S	S	Μ	S	S	
ſ	CO4	Μ	S	S	S	S	Μ	S	S	S	S	

3 – Strong, 2 – Medium , 1 - Low Mapping with Programme Specific Outcomes:

S

Μ

S

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15

S

Μ

S

Μ

CO5

S

Μ

S

Weighte Course (Veighted percentage of ourse Contribution to Pos3.03.03.03.03.0															
Title of t	the Course	NANO	MATE	ERIALS A	ND	NANC) TEC	HNO	LOG	Y						
Category	y EC - 1	Year Semeste	r l	Cred	its	3	C C	ourse ode		2322(04105					
Instruction Instruction	ional Hours	Lecture	Tutor	ial Lab Pract	ice	Total	CIA	Ext	ernal	,	Total					
per weer	3	4	1			5	25		75	5 100						
			Lear	ning Obje	ctive	es										
∠ ∠ To	o understand the c	oncept of	nano n	naterials an	d na	no techi	10logy.									
e To	o understand the v	arious typ	bes of n	ano materi	als a	nd their	proper	ties.								
es To	o understand the a	pplication	is of sy	nthetically	1mp	ortant na	ano ma	terials	s.	1	.1					
	correlate the cha	racteristic	cs of va	rious nano	mate	erials sy	ntnesiz	ted by	new i	tecnn	ologies.					
		routes to	rsynthe	encarry use	u ne	w nano	materia	us.	N	o of	Dorioda					
UNIT			Ľ	Details					f	o. or for th	ne Unit					
T	UNIT-I: Introd	luction	of na	nomaterial	s a	nd na	notech	iologi	ies.	or th						
-	Introduction-role	of size,	classif	fication-0D	, 11	D, 2D,	3D. S	ynthes	sis-							
	Bottom –Up, To	p–Down,	consol	idation of	Nan	o powde	ers. Fea	atures	of		15					
	nanostructures, E	Backgrour	nd of na	anostructur	es. T	Techniqu	ues of s	synthe	esis		15					
	of nanomaterial	ls, Tool	s of	the nano	sciei	nce. A	pplicat	ions	of							
	nanomaterials an	d technol	ogies.													
	 UNIT-II: Bonding and structure of the nanomaterials, Predicting the Type of Bonding in a Substance crystal structure. Metallic nanoparticles, Surfaces of Materials, Nanoparticle Size and Properties. Synthesis- Physical and chemical methods - inert gas condensation, arc discharge, laser ablation, sol-gel, solvothermal and hydrothermal-CVD-types, metallo organic, plasma enhanced, and low-pressure CVD. 									15						
III	UNIT-III: Mecl mechanical prop nanomaterials, nanomaterials Na oxide and alumin	hanical p erties. Te adhesion anoparticl na - synthe	ropertic chniqu and es: gol esis and	es of mate es to stud friction, d and silve l properties	erials y me the r, m	s, theor echanica ermal etal oxi	ies rele al prop proper des: sil	evant erties ties ica, ii	to of of ron	-	15					
IV	oxide and alumina - synthesis and properties.UNIT-IV:Electrical properties,Classification of Materials based on Conductivity, magnetic properties,electronic properties of materials.Classification of magneticphenomena.Semiconductor materials - classification-Ge, Si, GaAs,SiC, GaN, GaP, CdS,PbS.Identification of materials as p and n -typesemiconductor-Hall effect - quantum and anomalous, Hall voltage -interpretation of charge carrier density.Applications ofsemiconductors: p-n junction as transistors and rectifiers, photovoltaic									15						
V	UNIT-V: Nand nanoparticles in synthesis, and polymer-matrix TEM and AFM -	o thin differen properties composit principle	films, t field t Nanc tes-app , instru Cou	nanocon s. Core-sh ocomposite lications. mentation urse Outco	iposi ell S - Chai and a mes	ites. A nanopar metal-, racteriza applicati	Applica ticles ceran ation - ions.	tion - typ nic- a - SE	of bes, and EM,		15					
Course																
Outcom	es On completion	on of this c	course,	students w	ill be	e able										
CO1	To explain m	ethods of	fabrica	ating nanos	truct	ures.										
CO2	To relate the	unique pr	opertie	s of nanom	ateri	ials to re	educe d	imens	sionali	ity of	the					
	material.															

CO3	To describe tools for properties of nanostructures.
CO4	To discuss applications of nanomaterials.
CO5	CO5 : To understand the health and safety related to nanomaterial.

1. S.Mohan and V. Arjunan, Principles of Materials Science, MJP Publishers, 2016.

- 2. Arumugam, Materials Science, Anuradha Publications, 2007.
- 3. Giacavazzo et. al., Fundamentals of Crystallography, International Union of Crystallography. Oxford Science Publications, 2010
- 4. Woolfson, An Introduction to Crystallography, Cambridge University Press, 2012.

 James F. Shackelford and Madanapalli K. Muralidhara, Introduction to Materials Science for Engineers. 6th ed., PEARSON Press, 2007.

References Books

(Latest editions, and the style as given below must be strictly adhered to)

- 1. S.Mohan and V. Arjunan, Principles of Materials Science, MJP Publishers, 2016.
- 2. Arumugam, Materials Science, Anuradha Publications, 2007.
- 3. Giacavazzo et. al., Fundamentals of Crystallography, International Union of Crystallography. Oxford Science Publications, 2010
- 4. Woolfson, An Introduction to Crystallography, Cambridge University Press, 2012.
- 5. James F. Shackelford and Madanapalli K. Muralidhara, Introduction to Materials Science for Engineers. 6th ed., PEARSON Press, 2007.

Web Resources

1. http://xrayweb.chem.ou.edu/notes/symmetry.html.

2. http://www.uptti.ac.in/classroom-content/data/unit%20cell.pdf.

Mapping with Programme Outcomes:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10
CO1	S	S	S	S	М	S	S	S	S	Μ
CO2	М	S	S	S	S	Μ	S	S	S	S
CO3	S	S	Μ	S	S	S	S	М	S	S
CO4	М	S	S	S	S	Μ	S	S	S	S
CO5	М	S	М	S	S	М	S	М	S	S

3 - Strong, 2 - Medium, 1 - Low

CO /PO PSO1 PSO2 PSO3 PSO4 PSO5 3 3 CO1 3 3 3 3 3 CO₂ 3 3 3 CO3 3 3 3 3 3 **CO4** 3 3 3 3 3 CO5 3 3 3 3 3 Weightage 15 15 15 15 15 Weighted percentage of 3.0 3.0 3.0 3.0 3.0 **Course Contribution to Pos**

Title of th	ne Course	ELECT	RO CHEN	MISTRY								
Category	EC - II	Year Semester	I r I	Credits	3	C C	ourse ode	232204106				
Instructio	onal Hours	Lecture	Tutorial	Lab Prostico	Total	Total CIA Externa		Total CIA Externa		Fotal CIA External		al Total
per week		4	1		5	25	75	100				
~ To	Learning Objectives											
 To understand the behavior of electrorytes in terms of conductance, fonic atmosphere, interactions. To familiarize the structure of the electrical double layer of different models. To compare electrodes between current density and over potential. To discuss the mechanism of electrochemical reactions. To highlight the different types of over voltages and its applications in electro analytical techniques. 												
UNIT			Deta	ils				for the Unit				
	to colligative pro- mean ionic activi strength, Debye coefficient of str ion solvent and Bjerrum model appreciable co applications. Elec- of strong electro- limitations. Evid ion formations.	perties. D ity and me Huckel rong electr ion-ion Derivat ncentration ctrolytic curolytic curolytic qual ence for i	eviation fi an ionic a theory olytes De interaction ion of n of e onduction litative an onic atmo	rom ideal b ctivity coef of strong termination ns. Born ea Debye-Huc electrolytes -Debye-Huc and quantita sphere. Ion	ehavior. ficient-c electro of activ quation. kel lim modifickel Ons ative ve associa	Ionic oncept lytes, vity co Debye hiting fication sager t erificat tion a	activity, of ionic activity efficient e-Huckel law at ns and reatment ion and nd triple	15				
	Electrode-electr electrical double Electrocapillary curves. Electro- streaming and se Structure of dou Stern models of zero charge. App Electrodics of	olyte inter e layer, p phenomer kinetic ph dimentation ible layer: electrical o lications a Element	rface: Inte polarizable na - Lipp nenomena on potentia : Helmhol double lay nd limitati tary Elec	erfacial phe and non- omann equa electro-osi als, colloida ltz -Perrin, ver. Zeta po tons. ctrode Re	nomena polariza ation ele mosis, e l and po Guoy- otential a actions:	-Evide ble in ectro electrop ly elec Chapr nd por Beha	ences for terfaces, capillary phoresis, etrolytes. man and tential at	15				
Ē	electrodes: Stand and Cathodic cu equation, polariz	lard electr arrents, co able and	odes and ondition for non-polari	electrodes or the disc izable elect	at equili harge o rodes. N	brium. f ions Aodel	Anodic . Nernst of three	15				

¢	electrode system, over potential. Rate of electro chemical reactions:									
ן	Rates of simple elementary reactions. Butler-Volmer equation-									
S	significance of exchange current density, net current density and									
S	symmetry factor. Low and high field approximations. symmetry factor									
á	and transfer coefficient Tafel equations and Tafel plots.									
IV	Electrodics of Multistep Multi Electron System: Rates of multi-step									
6	electrode reactions, Butler - Volmer equation for a multi-step reaction.									
	Rate determining step, electrode polarization and depolarization.									
	Fransfer coefficients, its significance and determination, Stoichiometric									
1	number. Electro-chemical reaction mechanisms-rate expressions. order.									
2	and surface coverage. Reduction of I^{3-} , Fe^{2+} , and dissolution of Fe to									
	Fe ²⁺ . Overvoltage - Chemical and electro chemical, Phase, activation									
8	and concentration over potentials. Evolution of oxygen and hydrogen at									
	lifferent pH. Pourbiax and Evan's diagrams.									
V	Concentration Polarization, Batteries and Fuel cells: Modes of									
r	Transport of electro active species - Diffusion, migration and									
]	hydrodynamic modes. Role of supporting electrolytes. Polarography-									
	principle and applications. Principle of square wave polarography									
	Cyclic voltammetry- anodic and cathodic stripping voltammetry and									
	differential pulse voltammetry Sodium and lithium-ion batteries and									
1	redox flow batteries. Mechanism of charge storage: conversion and	15								
	alloving. Capacitors- mechanism of energy storage, charging at									
	constant current and constant voltage. Energy production systems: Fuel									
	Cells: classification, alkaline fuel cells, phosphoric acid fuel cells, high									
1	emperature fuel cells.									
	Course Outcomes									
Course	On completion of this course, students will be able									
Outcome	s On completion of this course, students will be able									
CO1	To understand the behaviour of electrolytes in solution and compare of electrical double layer of different models.	e the structures								
CO2	To predict the kinetics of electrode reactions applying Butler-Vol	mer and Tafel								
CO3	equations CO3 To study different thermodynamic mechanism of corrosion									
C04	To discuss the theories of electrolytes, electrical double layer, electrodics and									
C04	activity coefficient of electrolytes									
Text Books (Latest Editions)										
1. D. R	. Crow, Principles and applications of electrochemistry, 4thedition	, Chapman &								
Hall/	CRC, 2014.	non of o of the second								
2. J. Ra Macr	ijarani and J.C. Kuriakose, Kineucs and Mechanism of chemical t nillan India Ltd., New Delhi, 2011.	ransformations								
3. S. Gl	asstone, Electro chemistry, Affiliated East-West Press, Pvt., Ltd., New D	elhi, 2008.								
4. B. Viswanathan, S. Sundaram, R. Venkataraman, K. Rengarajan and P.S. Raghavan,										

	Electrochemistry-Principles and applications, S. Viswanathan Printers, Chennai, 2007.
5.	Joseph Wang, Analytical Electrochemistry, 2 nd edition, Wiley, 2004.

	References Books							
	(Latest editions, and the style as given below must be strictly adhered to)							
1.	J.O.M. Bockris and A.K.N. Reddy, Modern Electro chemistry, vol.1 and 2B, Springer,							
	Plenum Press, New York, 2008.							
2.	J.O.M. Bockris, A.K.N. Reddy and M.G. Aldeco Morden Electro chemistry, vol. 2A,							
	Springer, Plenum Press, New York, 2008.							
3.	Philip H. Rieger, Electrochemistry, 2 nd edition, Springer, New York, 2010.							
4.	L.I. Antropov, Theoretical electrochemistry, Mir Publishers, 1977.							
5.	K.L. Kapoor, A Text book of Physical chemistry, volume-3, Macmillan, 2001.							
Web Resources								
1.	1. https://www.pdfdrive.com/modern-electrochemistry-e34333229.							

Mapping with Programme Outcomes:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	
CO1	S	S	S	S	М	S	S	S	S	Μ	
CO2	М	S	S	S	S	М	S	S	S	S	
CO3	S	S	М	S	S	S	S	М	S	S	
CO4	М	S	S	S	S	М	S	S	S	S	
CO5	М	S	М	S	S	М	S	М	S	S	
3 – Strong, 2 – Medium , 1 - Low											

			PSO2 PSO3 PSO4 PSO5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 15 15 15 15 3.0 3.0 3.0 3.0		
CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of t	ne Course	MOLEC	ULAR S	PECTROS	COPY						
Category	EC - II	Year Semester	I r I	Credits	3	C C	ourse ode	2	32204107		
Instructio	onal Hours	Lecture	Tutorial	Lab Practice	Total	CIA	Extern	al	Total		
per week		4	1		5	25	75		100		
	Learning Objectives										
Z To understand the influence of rotation and vibrations on the spectra of the											
molec	molecules.										
∠ 10 Sti fragm	and the principle	in Mass s	n spectroscor	copy, ESK	spectro	scopy,	EPK spe	ectro	oscopy and		
Z To hi	ghlight the sign	ificance of	f Franck-	y. Condon pri	nciple to	o inter	pret the	sele	ection rule.		
intens	ity and types of a	electronic	transitions	r	<u>-</u>		F		,		
🗷 To in	terpret the first	and secon	d order N	MR spect	ra in ter	ms of	splitting	, an	d coupling		
patter	ns using correlation	ion technic	ues such a	as COSY, H	IETCOF	R, NOE	ESY.				
🗷 To ca	rry out the struct	ural elucid	ation of m	olecules us	ing diffe	rent sp	ectral te	chni	iques.		
			Doto	ila				р	NO. 01 Iorioda for		
UNIT			Deta	115				L	the Unit		
Ι	UNIT-I: Rotatio	onal and I	Raman Sr	pectroscopy	v: Rotati	onal s	pectra of	·			
	diatomic and po	lyatomic	molecules	. Intensities	s of rota	ational	spectral				
	ines, effect of is	otopic sub	stitution. I	Non-rigid ro	otators. C	Classic	al theory				
	of the Raman eff	fect, polari	zability as	s a tensor, p	olarizab	ility el	lipsoids,				
	quantum theory	of the Ran	nan effect	, Pure rotat	ional Ra	man s	pectra of		15		
	inear and asym	metric top	o molecul	es, Stokes	and and	ti-Stok	es lines.				
	Vibrational Ram	an spectra,	Raman a	ctivity of vi	brations	, rule c	f mutual				
	exclusion, rotation	onal fine s	structure-O	D and S br	anches,	Polariz	zation of	·			
	Raman scattered	photons.									
II	UNIT-II: Vibr	ational S	Spectrosc	opy: Vibr	ations	of m	olecules,				
]	narmonic and a	nharmonic	oscillator	rs- vibratio	nal ener	gy ex	pression,				
	energy level diag	gram, vibr	ational wa	ave function	ns and the	heir sy	mmetry,				
	selection rules,	expression	on for t	he energie	es of	spectra	l lines,				
	computation of	intensities	, hot band	ds, effect o	of isotop	ic sub	stitution.				
	Diatomic vibrat	ing rotor,	vibration	al-rotationa	al spectr	a of	diatomic		15		
]	molecules, P, I	R branche	es, breakc	lown of t	he Bori	1-Oppe	enheimer				
	approximation.	Vibrations	s of poly	yatomic m	olecules	- s	ymmetry				
]	properties, overto	one and co	mbination	i frequencie	es. Influe	ence of	rotation				
	on vibrational s	spectra of	polyatom	nc molecu	le, P, Ç	2, K t	oranches,				
	paramet and perpendicular vibrations of linear and symmetric top										
TTT		otronio	anastraca	onv. Ela	atronia	Speet	*0000 0 1/	-			
	Electronic space		of dist	opy: Elec		Eron	Conden				
	rinciple disso	ciation an	d predies	sociation s	nectra	танк π_→π*	n→π*				
	ransitions and th	neir selecti	on rules 1	Photoelectr	pecua. on Spect	n -n	v Rasio				
	arinciples pho	toelectron	snectra	of sim	on speci	lecules	Y. Dasie Yrav		15		
	photoelectron sr	ectroscop	v (XPS)	Lasere I a	ser acti	on pr	nulation				
	nversion prope	erties of 1	aser radi	ation ever	nnles o	f sim	pulation				
	systems	1005 01 1	user rau	unon, chai	iipies 0.	. 51111	10 10501				
1	- J - CO 1110.							1			

IV	UNIT-IV: NMR and ESR spectroscopy: Chemical shift, Factors influencing chemical shifts: electronegativity and electrostatic effects; Mechanism of shielding and deshielding. Spin systems: First order and second order coupling of AB systems, Simplification of complex spectra. Spin-spin interactions: Homonuclear coupling interactions - AX, AX2, AB types. Vicinal, germinal and long-range coupling-spin decoupling. Nuclear Overhauser effect (NOE), Factors influencing coupling constants and Relative intensities. 13CNMR and structural correlations, Satellites. Brief introduction to 2D NMR – COSY, NOESY. Introduction to 31P, 19F NMR. ESR spectroscopy Characteristic features of ESR spectra, line shapes and line widths; ESR spectrometer. The g value and the hyperfine coupling parameter (A), origin of hyperfine interaction. Interpretation of ESR spectra and structure elucidation of organic radicals using ESR spectroscopy; Spin orbit coupling and significance of g-tensors, zero/non-zero field splitting, Kramer's degeneracy, application to transition metal complexes (having one to five unpaired electrons) including biological molecules and inorganic free radicals. ESR spectra of magnetically dilute samples.	15
V	UNIT-V: Mass Spectrometry, EPR and Mossbauer Spectroscopy: Ionization techniques- Electron ionization (EI), chemical ionization (CI), desorption ionization (FAB/MALDI), electrospray ionization (ESI), isotope abundance, molecular ion, fragmentation processes of organic molecules, deduction of structure through mass spectral fragmentation, high resolution. Effect of isotopes on the appearance of mass spectrum. EPR spectra of anisotropic systems - anisotropy in g-value, causes of anisotropy, anisotropy in hyperfine coupling, hyperfine splitting caused by quadrupole nuclei. Zero-field splitting (ZFS) and Kramer's degeneracy. Applications of EPR to organic and inorganic systems. Structural elucidation of organic compounds by combined spectral techniques. Principle of Mossbauer spectroscopy: Doppler shift, recoil energy. Isomer shift, quadrupole splitting, magnetic interactions. Applications: Mossbauer spectra of high and low-spin Fe and Sn compounds.	15

	Course Outcomes								
Course	On completion of this course, students will;								
Outcomes									
CO1	To understand the importance of rotational and Raman spectroscopy.								
CO2	To apply the vibrational spectroscopic techniques to diatomic and polyatomic								
	molecules.								
CO3	To evaluate different electronic spectra of simple molecules using electronic								
005	spectroscopy.								
C04	To outline the NMR, ¹³ C NMR, 2D NMR – COSY, NOESY, Introduction to ³¹ P,								
0.04	¹⁹ F NMR and ESR spectroscopic techniques.								
C05	To develop the knowledge on principle, instrumentation and structural elucidation								
0.05	of simple molecules using Mass Spectrometry, EPR and Mossbauer Spectroscopy								

1	techniques.

- C. N. Banwell and E. M. McCash, *Fundamentals of Molecular Spectroscopy*, 4th Ed., Tata McGraw Hill, New Delhi, 2000.
- 2. R. M. Silverstein and F. X. Webster, *Spectroscopic Identification of Organic Compounds*, 6th Ed., John Wiley & Sons, New York, 2003.
- 3. W. Kemp, *Applications of Spectroscopy*, English Language Book Society, 1987.
- 4. D. H. Williams and I. Fleming, *Spectroscopic Methods in Organic Chemistry*, 4th Ed., Tata McGraw-Hill Publishing Company, New Delhi, 1988.
- 5. R. S. Drago, *Physical Methods in Chemistry*; Saunders: Philadelphia, 1992.

References Books

(Latest editions, and the style as given below must be strictly adhered to)

- 1. P.W. Atkins and J. de Paula, *Physical Chemistry*, 7th Ed., Oxford University Press, Oxford, 2002.
- 2. I. N. Levine, *Molecular Spectroscopy*, John Wiley & Sons, New York, 1974.
- 3. A. Rahman, *Nuclear Magnetic Resonance-Basic Principles*, Springer-Verlag, New York, 1986.
- 4. K. Nakamoto, *Infrared and Raman Spectra of Inorganic and coordination Compounds*, PartB: 5th ed., John Wiley& Sons Inc., New York, 1997.
- 5. J. A. Weil, J. R. Bolton and J. E. Wertz, *Electron Paramagnetic Resonance*; Wiley Interscience, 1994.

 Web Resources

 https://onlinecourses.nptel.ac.in/noc20_cy08/preview2.

 https://www.digimat.in/nptel/courses/video/104106122/L14.html

Mapping with Programme Outcomes:

PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10
S	S	S	S	М	S	S	S	S	М
М	S	S	S	S	М	S	S	S	S
S	S	М	S	S	S	S	М	S	S
М	S	S	S	S	М	S	S	S	S
М	S	М	S	S	М	S	М	S	S
	FO1SMMM	FO 1 FO 2 S S M S S S M S M S M S M S	FO 1 FO 2 FO 3 S S S M S S S S M M S S M S S M S S M S M M S M	FO1 FO2 FO3 FO4 S S S S M S S S S S M S M S S S M S S S M S S S M S M S M S M S	FO1 FO2 FO3 FO4 FO3 S S S S M M S S S S S S M S S S M S S M S S M S S S S S M S S S S S M S M S S S	FO1 FO2 FO3 FO3 FO3 FO3 S S S S M S M S S S M S M S S S S M S S M S S S M S S S S M M S S S S M M S M S S M	FO1 FO2 FO3 FO4 FO3 FO4 FO3 FO4 FO3 FO3 <th>KO1 FO2 FO3 FO4 FO3 FO3<th>KOT FO2 FO3 FO4 FO3 FO3</th></th>	KO1 FO2 FO3 FO4 FO3 FO3 <th>KOT FO2 FO3 FO4 FO3 FO3</th>	KOT FO2 FO3 FO4 FO3 FO3

3 – Strong, 2 – Medium, 1 - Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of t	Title of the Course		PREPARATION OF CONSUMER PRODUCTS - LAB								
Category	SEC - I	Year I		Credits	2	C	ourse	23220/108			
Category	DLC I	Semester	I I	cicuits	2	C	ode	4	52204100		
Instructional Hours		Lecture	Tutorial	Lab Practice	Total	CIA	Extern	al	Total		
Por woon			1	2	3	25	75		100		
Prerequ	Prerequisites Basic concepts of organic chemistry										
			Learning	g Objective	s						
🗷 To ur	derstand the co	ncept of Pa	reparation	of useful c	onsumer	produ	icts.				
🗷 To de	evelop analytica	l skill in t	he handli	ng of cher	nical rea	agents	forprepa	irati	on.		
🗷 To ex	periment differe	ent purificat	tion and c	lrying techr	niques fo	or thec	ompound	l pro	ocessing.		
UNIT			Deta	ils							
	Preparation of	following c	onsumer	products:							
	1. Prepar	ation of Sl	nampoo								
	2. Prepar	ation of So	bap								
	3. Preparation of Phenoyls										
	4. Preparation of sanitizers										
	5. Prepar	ation of Sc	cented oils	5							
	6. Prepar	ation of D	ish wash l	Liquid							

	Course Outcomes									
Course Outcomes	On completion of this course, students will be able;									
CO1	To recall the basic principles of consumer products, qualitative analysis and preparation.									
CO2	To explain the method of separation and analysis of separated by suitable preparation method.									

	Text Books (Latest Editions)											
(Creative Cosmetics Lab – Thames and Kosmos											
	Web Resources											
	1. https://www.thamesandkosmos.com/manuals/full/646518_Creative_Co											
	smetics_Lab_Manual.pdf											
	Mapping with Programme Outcomes:											
		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	
	CO1	S	S	S	S	Μ	S	S	S	S	М	
	CO2	М	S	S	S	S	М	S	S	S	S	
	CO3	S	S	Μ	S	S	S	S	М	S	S	
	CO4	М	S	S	S	S	М	S	S	S	S	

S

Μ

S

М

S

S

3-Strong, 2-Medium , 1-Low

S

Μ

Mapping with Programme Specific Outcomes: CO /PO PSO1 PSO2 PSO3 PSO4 PSO5 CO1 3 3 3 3 3 3 3 3 **CO2** 3 3 3 3 3 3 3 CO3 **CO4** 3 3 3 3 3 CO5 3 3 3 3 3 15 15 15 15 15 Weightage

М

CO5

S

Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of t	he Course	CHEMIS	STRY IN	CONSUM	ER PR	ODUC	CTS			
Category	AECC - I	Year Semester	I I	Credits	2	C C	ourse ode	232204109		
Instruction of the second seco	onal Hours	Lecture	Tutorial	Lab Practice	Total CIA		Extern	al Total		
per week		2	-		2	25	75	100		
Prerequ	lisites	Basic k	nowledg	e of spect	roscop	у				
			Learning	g Objective	S					
🗷 To un	derstand the prep	paration of	soap and	mechanism	of its ac	ction.				
🗷 To stu	idy the principle	of surface	active age	ent and mec	hanism o	of action	on of dete	rgent.		
🗷 To hig	ghlight the signifi	icance of sl	hampoo a	nd its classi	fication.					
🗷 To un	derstand the prep	paration an	d uses of f	face cream	and Nail	polisł	ı.			
🗷 To ca	rry out the nodes	of perfum	es and pre	paration of	flavors.					
UNIT	UNIT Details							the Unit		
T	Soaps: Saponifi	oans: Sanonification of oils and fats – Manufacture of soans								
-	formulation of to	ilet soaps.	Herbal so	aps. Mecha	nism of	action	of soap.	6		
II	Detergents: Surf	ace active	agents -	- classifica	tion of	surfac	e active			
	agents – Differen	nt ingredie	nts in the	formulation	on of de	tergen	t powder	6		
	and soaps - Mec	hanism of	action of	detergents	- comp	arison	of soaps	U		
	and detergents.									
III	Shampoos: Manu	ifacture of	Sodium 1	Lauryl Sulf	ate and	SLS fi	ee kadhi	_		
	product Johnson	baby soap	and sham	poos. Diffe	rent kind	d of sh	ampoo –	6		
157	anti dandruff, hei	bal and ba	by shamp	00.		<u> </u>				
11	Face cream and face (Nall Polish	: ingredie	nts – Tuncti	ons – di	nerent	types of Nail	6		
	Polish removers	reams. Ind	in ponsile	s – man po	man pre	paradic		U		
V	Perfumes and fa	alvours: D	Definition	– Manufa	cture of	f perfi	ime and			
	flavouring mater	rials – pr	oduction	of Natural	l perfun	ne and	d flower	6		
	perfume – fruit fl	avours – a	rtificial fla	avours.	I			-		
								•		

Course Outcomes								
Course Outcomes	On completion of this course, students will be able;							
CO1 To understand the importance using of soap.								
CO2 To apply the cleaning action of soap and detergent.								
CO3 To evaluate different type of Shampoo.								
CO4	To outline the preparation and use of face cream and nail polish.							
CO5	To develop the knowledge on principle, preparation of perfumes and flavors.							
	Text Books (Latest Editions)							
1. Gob	al Rao S., Outlines of Chemical technology, Affiliated East West Press, 1998.							
2. Kafa	ro, Wasteless Chemical processing, Mir Publishers, 1995							
	References Books							
(]	(Latest editions, and the style as given below must be strictly adhered to)							
01. Saw	yer W., Experimental cosmetics, Dover Publishers, New York, 2000.							
02. Shar	ma B.K, Industrial Chemistry, Goel Publishing house, 1995.							

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	М	S	S	S	S	М
CO 2	М	S	S	S	S	М	S	S	S	S
CO 3	S	S	М	S	S	S	S	М	S	S
CO 4	М	S	S	S	S	М	S	S	S	S
CO 5	М	S	М	S	S	М	S	М	S	S

CO-PO Mapping (Course Articulation Matrix)

S-Strong ; M-Medium; L-Low

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of CourseContribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of t	he Course	ORGAN	IC REAG	CTION ME	CHAN	ISM -	II			
		Voor	T		1	C	ourse			
Category	Core - 4	Semester	r II	Credits	4	C	ode	23	2204201	
Instructi	onal Hours	Lecture	Tutorial	Lab Practice	Total	CIA	Extern	al	Total	
per week	•	4	1		5	25	75		100	
			Learning	g Objective	S					
∠ To	understand the compound	concept of	aromatici	ty in benze	noid, no	n-benz	enoid, he	etero	cyclic and	
To understand the mechanism involved in various types of organic reaction										
evi	idences.				21		U			
🖉 To	understand the a	pplication	s of synthe	etically imp	ortant re	agents	•			
∠ To	correlate the rea	ctivity bety	ween aliph	hatic and are	omatic c	ompou	nds.			
<i>⊭</i> ≤ 10	design synthetic	Toutes for	synthetica	arry used or	game rea	actions	•		No. of	
UNIT			Deta	ils				Pe	riods for	
								t	he Unit	
I	UNIT-I: Elimin	ation and	Free Rad	lical React	ions: M	echani	sms: E2,			
	E1, and E1cB m	nechanisms	s. Syn- an	d anti-elimi	inations.	Orien	tation of			
	the double bond	l: Hoffmar	nn and Sa	ytzeff rules	s. Reacti	ivity: I	Effect of			
	substrate, attacki	ng bases,	leaving gr	oup and me	edium. S	stereoc	hemistry			
	of eliminations	in acyclic	and cycl	ic systems,	pyrolyt	ic elir	nination.			
	Long lived and s	short-lived	radicals –	- Production	n of radi	cals by	thermal		15	
	and photochemical reactions, Detection and stability of radicals, characteristics of free radical reactions and free radical, reactions of radicals; polymerization, addition, halogenations, aromatic									
	aromatic substrat	tes reactiv	ity in the	ettacking ra	dical ef	fect of	solvent			
п				attuening ru	ureur, er		borvent.			
	UNIT-II: Oxidatio	n and Redu	ction Read	ctions: Mech	nanisms:	Direct	electron			
	transfer, hydride	e transfer,	hydrogen	transfer, d	displacer	nent, i	addition-			
	elimination, oxid	lative and	reductive	coupling re	actions.	Mech	anism of			
	oxidation reactio	ons: Dehyd	Irogenatio	n by quino	nes, sele	enium	dioxides,			
	ferricyanide, me	ercuric ad	cetate le	ad tetraac	etate,	perma	nganate,			
	manganese dio	oxide, osr	nium tet	roxide, ox	idation	of s	aturated			
	hydrocarbons, a	lkyl group	s, alcohol	s, halides	and am	ines. F	leactions			
	involving cleavag	ge of C-C l	bonds - cl	eavage of a	double b	onds,	oxidative		15	
	decarboxylation,	allylic o	kidation,	oxidation l	by chroi	mium	trioxide-			
	pyridine, DMSO	-Oxalyl cl	hloride (S	wern oxid	ation) d	and C	orey-Kim			
	oxidation, dime	thyl sulpł	noxide- di	icyclohexyl	carbodi	imide	(DMSO-			
	DCCD). Mechanism of reduction reactions: Wolff-Kishner, Clemmenson,									
	Rosenmund, reduction with Trialkyl and triphenyltin hydrides,									
	McFadyen-Steven's reduction, Homogeneous hydrogenation,									
	Hydroboration w	ith cyclic s	ystems, M	PV and Bou	veault-B	lanc re	duction.			
III	UNIT-III: Real	rrangeme	nts: Rear	rangements	to ele	ctron	deficient			
	carbon: Pinacol	-pinacolor	e and se	emi-pinacol	one rea	irrange	ments -		15	
	applications an	d stereoc	hemistry,	Wagner-I	Meerwei	n, De	emjanov,			

	 Dienone-phenol, Baker-Venkataraman, Benzilic acid and Wolff rearrangements. Rearrangements to electron deficient nitrogen: Hofmann, Curtius, Schmidt, Lossen, Beckmann and abnormal Beckmann rearrangements. Rearrangements to electron deficient oxygen: Baeyer-Villiger oxidation and Dakin rearrangements. Rearrangements to electron rich atom: Favorskii, Quasi-Favorskii, Stevens, [1,2]-Wittig and [2,3]-Wittig rearrangements. Fries and Photo Fries rearrangement. Intramolecular rearrangements – Claisen, abnormal Claisen, Cope, oxy-Cope Benzidine rearrangements. 	
15	UNIT-IV: Addition to Carbon Multiple Bonds: Mechanisms: (a) Addition to carbon-carbon multiple bonds- Addition reactions involving electrophiles, nucleophiles, free radicals, carbenes and cyclic mechanisms-Orientation and reactivity, hydrogenation of double and triple bonds, Michael reaction, addition of oxygen and Nitrogen; (b) Addition to carbon-hetero atom multiple bonds: Mannich reaction, acids, esters, nitrites, addition of Grignard reagents, Wittig reaction, Prins reaction. Stereochemical aspects of addition reactions. Addition to Carbon-Hetero atom Multiplebonds: Addition of Grignard reagents, organozinc and organolithium reagents to carbonyl and unsaturated carbonyl compounds. Mechanism of condensation reactions involving enolates —Stobbe reactions. Hydrolysis of esters and amides, ammonolysis of esters.	
15	 UNIT-V: Reagents and Modern Synthetic Reactions: Lithium diisopropylamine (LDA), Azobisisobutyronitrile (AIBN), Sodium cyanoborohydride (NaBH₃CN), <i>meta</i>-Chloroperbenzoic acid (m-CPBA), Dimethyl aminiopyridine (DMAP), n-Bu₃SnD, Triethylamine (TEA), Diazobicyclo[5.4.0]undec-7-ene (DBU), Diisopropylazodicarboxylate (DIAD), Diethylazodicarboxylate (DEAD), <i>N</i>-bromosuccinimide (NBS), Trifluoroacetic acid (TFA), Tetramethyl piperiridin-1-oxyl (TEMPO), Phenyltrimethylammonium tribromide (PTAB). Diazomethane and Zn-Cu, Diethyl maleate (DEM), Copper diacetylacetonate (Cu(acac)₂), TiCl₃, NaIO₄, Pyridinium chlorochromate (PCC), Pyridinium dichromate (PDC), Meisenheimer complex. Suzuki coupling, Heck reaction, Negishi reaction, Baylis-Hillman reaction. 	

	Course Outcomes						
Course	On completion of this course, students will be able;						
Outcomes							
CO1	To recall the basic principles of aromaticity of organic and heterocyclic compounds.						
CO2	To understand the mechanism of various types of organic reactions.						
CO3	To predict the suitable reagents for the conversion of selective organic compounds.						
CO4	To correlate the principles of substitution, elimination, and addition reactions.						
CO5	To design new routes to synthesis organic compounds.						
Text Books (Latest Editions)							
1. J. Ma	rch and M. Smith, Advanced Organic Chemistry, 5th ed., John-Wiley and Sons.						

2001.

- 2. E. S. Gould, *Mechanism and Structure in Organic Chemistry*, Holt, Rinehart and Winston Inc., 1959.
- 3. P. S. Kalsi, *Stereochemistry of carbon compounds*, 8thedn, New Age International Publishers, 2015.
- 4. P. Y.Bruice, Organic Chemistry, 7thedn., Prentice Hall, 2013.
- 5. R. T. Morrison, R. N. Boyd, S. K. Bhattacharjee*Organic Chemistry*, 7th edn., Pearson Education, 2010.

References Books

(Latest editions, and the style as given below must be strictly adhered to)

- 1. S. H. Pine, *Organic Chemistry*, 5thedn, McGraw Hill International Editionn, 1987.
- 2. L. F. Fieser and M. Fieser, *Organic Chemistry*, Asia Publishing House, Bombay, 2000.
- 3. E.S. Gould, *Mechanism and Structure in Organic Chemistry*, Holt, Rinehart and Winston Inc., 1959.
- 4. T. L. Gilchrist, *Heterocyclic Chemistry*, Longman Press, 1989.
- 5. J. A. Joule and K. Mills, *Heterocyclic Chemistry*, 4thed., John-Wiley, 2010.

 Web Resources

 1.https://sites.google.com/site/chemistryebookscollection02/home/organic-chemistry/organic

 2. https://www.organic-chemistry.org/

	Mapping with Programme Outcomes:											
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10		
CO1	S	S	S	S	М	S	S	S	S	Μ		
CO2	Μ	S	S	S	S	Μ	S	S	S	S		
CO3	S	S	М	S	S	S	S	М	S	S		
CO4	Μ	S	S	S	S	Μ	S	S	S	S		
CO5	Μ	S	Μ	S	S	Μ	S	М	S	S		

3 - Strong, 2 - Medium, 1 - Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the	e Course	PHYSIC	CAL CHE	MISTRY -	Ι				
Category	Core - 5	Year	I r II	Credits	4	C	ourse		232204202
Instruction	nal Hours	Lecture	Tutorial	Lab	Total	CIA	Extern	nal	Total
per week		4	1	Practice	5	25	75		100
		1	Learnin	g Objectiv	es				
 ✓ To rec quantit ✓ To und ✓ To con ✓ To stud UNIT UNI pote Dete Fuga metl There equa coef free: 	call the fundar ies. lerstand the clas apare the signifi relate the theorie ly the mechanis TT-I: Classical ntial, Gibb's- ermination of pa acity- determin hods-dependence rmodynamics of ation application ficients-standar- zing point metho	nentals of sical and s cance of N es of reacti m and kine Thermoo Duhem artial mola ation of t e of t f ideal and ns of ideal d states ods.	f thermood tatistical a Maxwell-B ion rates for etics of rea Detai lynamics: equation ar quantiti fugacity b temperature non-ideal and non- determi	lynamics a approach of coltzman, Fe or the evalu actions. ils Partial mon-binary es. Thermo by graphica re, pressu binary mix ideal mixtu nation-vapo	nd the the funcermi-Dir ation of olar pro and te dynamic il and e ure and tures, D res. Action	compo tions ac and thermo perties ernary s of re quatio d co uhem - ivity at sure,	Bose-Ei odynami -Chemic system eal gases n of sta mpositic Margul nd activi EMF at	of instruction ins	partial molar ein arameters. No. of Periods for the Unit
II UNI ther prob part: Ferr Part part: The equi pres func Hea capa	T-II: Statisti modynamics pabilities-distrib icles. Assemblic ni Dirac & B ition functions- ition functions rmodynamic fu librium constar sure, internal tion residual en t capacity of me icity of solids-E	ical ther concepts ution of es, ensemb ose-Einste evaluatior for monoa nctions ir nts. Statist energy, en ttropy, equ ono and d instein and	rmodynam of the distingu les, canon ein Statist n of trans atomic, di n terms o ical appro- tropy, ent ilibrium c i atomic g d Debye m	nics: Intro ermodynam hishable a hical particle tics- compa- slational, vi- atomic and f partition pach to The chalpy, Gible constants an gases-ortho nodels.	oduction ic and and not es. Maxv arison a ibrationa polyato function ermodyn o's fun o's fun ad equipa and para	of ma n-distinvell - E nd ap and and mic ic ns-calc amic ic ction, artition	statistic thematic nguishab Boltzman plication rotation leal gase ulation propertie Helmhol princip ogen. He	cal cal ble nn, ns. nal es. of es: ltz le. eat	15
III UNI mas curr veri	T-III: Irrever s and energy en ent flow, forc fication- Onsag	sible The ntropy pro ce and fl er recipro	ermodyna oduction in lux conce cal relatio	mics: Theon n open systepts. Onsagonships. Electron	ories of ems by ger theo ectro kin	conse heat, 1 ory-val	rvation matter an lidity an nd therm	of nd nd no	15

IV UNIT-IV: Kinetics of Reactions: Theories of reactions-effect of temperature on reaction rates, collision theory of reaction rates, unimolecular reactions -Lindeman and Christiansen hypothesis- molecular beams, collision cross sections, effectiveness of collisions, Potential energy surfaces. Transition state theory-evaluation of thermodynamic parameters of activation-applications of ARRT to reactions between atoms and molecules, time and true order-kinetic parameter evaluation. Factors determine the reaction rates in solution - primary salt effect and secondary salt effect, Homogeneous catalysis- acid- base catalysis-mechanism of acid base catalyzed reactions.Bronsted catalysis law, enzyme catalysis-Michelis-Menton catalysis. V UNIT-V: Kinetics of complex and fast reactions: Kinetics of complex reactions, reversible reactions, consecutive reactions, parallel reactions, chain reactions. Chain reactions-relaxation methods - temperature and pressure jump methods electric and magnetic field jump methods -stopped flow flash photolysis methods and pulse radiolysis. Kinetics of polymerization-free radical, cationic, anionic polymerization - Poly condensation. Course Outcomes Course Outcomes On completion of this course, students will be able CO1 To explain the classical and statistical concepts of thermodynamics. CO3 To discuss the various thermodynamic and kinetic determination.		maah	anical officiate Application of irreversible thermodynamics to biological							
IV UNIT-IV: Kinetics of Reactions: Theories of reactions-effect of IV UNIT-IV: Kinetics of Reactions: Theories of reactions-effect of temperature on reaction rates, collision theory of reaction rates, Unimolecular reactions -Lindeman and Christiansen hypothesis- molecular beams, collision cross sections, effectiveness of collisions, Potential energy surfaces. Transition state theory-evaluation of thermodynamic parameters of activation-applications of ARRT to reactions between atoms and molecules, 15 time and true order-kinetic parameter evaluation. Factors determine the reaction rates in solution - primary salt effect and secondary salt effect, Homogeneous catalysis- acid- base catalysis-mechanism of acid base catalyzed reactions-Bronsted catalysis law, enzyme catalysis-Michelis- Menton catalysis. V UNIT-V: Kinetics of complex and fast reactions: Kinetics of complex reactions, reversible reactions, consecutive reactions, parallel reactions, chain reactions. Chain reactions-chain length, kinetics of H2 – Cl2 & H2 – Br2 reactions (Thermal and Photochemical reactions) - Rice Herzfeld mechanism. Study of fast reactions-relaxation methods- temperature and pressure jump methods electric and magnetic field jump methods -stopped flow flash photolysis methods and pulse radiolysis. Kinetics of polymerization-free radical, cationic, anionic polymerization - Poly condensation. 15 CO1 To explain the classical and statistical concepts of thermodynamics. To compare and correlate the thermodynamic concepts to study the kinetics of chemical reactions. <th></th> <th colspan="9">systems.</th>		systems.								
IV UNIT-IV: Kinetics of Reactions: Theories of reactions-effect of temperature on reaction rates, collision theory of reaction rates, Unimolecular reactions -Lindeman and Christiansen hypothesis- molecular beams, collision cross sections, effectiveness of collisions, Potential energy surfaces. Transition state theory-evaluation of thermodynamic parameters of activation-applications of ARRT to reactions between atoms and molecules, time and true order-kinetic parameter evaluation. Factors determine the reaction rates in solution - primary salt effect and secondary salt effect, Homogeneous catalysis- acid- base catalysis-mechanism of acid base catalyzed reactions-Bronsted catalysis law, enzyme catalysis-Michelis-Menton catalysis. V UNIT-V: Kinetics of complex and fast reactions: Kinetics of complex reactions, reversible reactions, consecutive reactions, parallel reactions, chain reactions. Chain reactions-chain length, kinetics of H2 – Cl2 & H2 – Br2 reactions (Thermal and Photochemical reactions) - Rice Herzfeld mechanism. Study of fast reactions-relaxation methods- temperature and pressure jump methods electric and magnetic field jump methods -stopped flow flash photolysis methods and pulse radiolysis. Kinetics of polymerization-free radical, cationic, anionic polymerization - Poly condensation. 15 CO1 To explain the classical and statistical concepts of thermodynamics. To compare and correlate the thermodynamic concepts to study the kinetics of chemical reactions. CO3 To discuss the various thermodynamic cand for reactions. To reactions.	TT 7	syster								
temperature on reaction rates, collision theory of reaction rates, Unimolecular reactions -Lindeman and Christiansen hypothesis- molecular beams, collision cross sections, effectiveness of collisions, Potential energy surfaces. Transition state theory-evaluation of thermodynamic parameters of activation-applications of ARRT to reactions between atoms and molecules, time and true order-kinetic parameter evaluation. Factors determine the reaction rates in solution - primary salt effect and secondary salt effect, Homogeneous catalysis- acid- base catalysis-mechanism of acid base catalyzed reactions-Bronsted catalysis law, enzyme catalysis-Michelis- Menton catalysis. V UNIT-V: Kinetics of complex and fast reactions: Kinetics of complex reactions, reversible reactions, consecutive reactions, parallel reactions, chain reactions. Chain reactions-relaxation methods- temperature and pressure jump methods electric and magnetic field jump methods -stopped flow flash photolysis methods and pulse radiolysis. Kinetics of polymerization-free radical, cationic, anionic polymerization - Poly condensation. CO1 To explain the classical and statistical concepts of thermodynamics. To compare and correlate the thermodynamic concepts to study the kinetics of chemical reactions. CO3 To discuss the various thermodynamic and kinetic determination.	IV	UNIT	-IV: Kinetics of Reactions: Theories of reactions-effect of							
Unimolecular reactions -Lindeman and Christiansen hypothesis- molecular beams, collision cross sections, effectiveness of collisions, Potential energy surfaces. Transition state theory-evaluation of thermodynamic parameters of activation-applications of ARRT to reactions between atoms and molecules, time and true order-kinetic parameter evaluation. Factors determine the reaction rates in solution - primary salt effect and secondary salt effect, Homogeneous catalysis- acid- base catalysis-mechanism of acid base catalyzed reactions-Bronsted catalysis law, enzyme catalysis-Michelis- Menton catalysis. V UNIT-V: Kinetics of complex and fast reactions; Kinetics of complex reactions, reversible reactions, consecutive reactions, parallel reactions, chain reactions. Chain reactions-chain length, kinetics of H ₂ - Cl ₂ & H ₂ - Br ₂ reactions (Thermal and Photochemical reactions) - Rice Herzfeld mechanism. Study of fast reactions-relaxation methods - stopped flow flash photolysis methods and pulse radiolysis. Kinetics of polymerization-free radical, cationic, anionic polymerization - Poly cond-nsation. Course On completion of this course, students will be able CO1 To explain the classical and statistical concepts of thermodynamics. CO2 To compare and correlate the thermodynami		tempe	erature on reaction rates, collision theory of reaction rates,							
beams, collision cross sections, effectiveness of collisions, Potential energy surfaces. Transition state theory-evaluation of thermodynamic parameters of activation-applications of ARRT to reactions between atoms and molecules, time and true order-kinetic parameter evaluation. Factors determine the reaction rates in solution - primary salt effect and secondary salt effect, Homogeneous catalysis- acid- base catalysis-mechanism of acid base catalyzed reactions-Bronsted catalysis law, enzyme catalysis-Michelis-Menton catalysis. 15 V UNIT-V: Kinetics of complex and fast reactions: Kinetics of complex reactions, reversible reactions, consecutive reactions, parallel reactions, chain reactions. Chain reactions-chain length, kinetics of H ₂ - Cl ₂ & H ₂ - Br ₂ reactions (Thermal and Photochemical reactions) - Rice Herzfeld mechanism. Study of fast reactions-relaxation methods - temperature and pressure jump methods electric and magnetic field jump methods -stopped flow flash photolysis methods and pulse radiolysis. Kinetics of polymerization-free radical, cationic, anionic polymerization - Poly condensation. 15 Course Ontcomes On completion of this course, students will be able 16 CO1 To explain the classical and statistical concepts of thermodynamics. To compare and correlate the thermodynamic concepts to study the kinetics of chemical reactions. CO3 To discuss the various thermodynamic and kinetic determination. To evaluate the thermodynamic cand star end correlate sections are and for transition.		Unim	olecular reactions -Lindeman and Christiansen hypothesis- molecular							
surfaces. Transition state theory-evaluation of thermodynamic parameters of activation-applications of ARRT to reactions between atoms and molecules, time and true order-kinetic parameter evaluation. Factors determine the reaction rates in solution - primary salt effect and secondary salt effect, Homogeneous catalysis- acid- base catalysis-mechanism of acid base catalyzed reactions-Bronsted catalysis law, enzyme catalysis-Michelis-Menton catalysis. 15 V UNIT-V: Kinetics of complex and fast reactions: Kinetics of complex reactions, reversible reactions, consecutive reactions, parallel reactions, chain reactions. Chain reactions-chain length, kinetics of H2 - Cl2 & H2 - Br2 reactions (Thermal and Photochemical reactions) - Rice Herzfeld mechanism. Study of fast reactions-relaxation methods- temperature and pressure jump methods electric and magnetic field jump methods -stopped flow flash photolysis methods and pulse radiolysis. Kinetics of polymerization-free radical, cationic, anionic polymerization - Poly condensation. 15 Course Outcomes On completion of this course, students will be able 15 CO1 To explain the classical and statistical concepts of thermodynamics. 15 CO3 To discuss the various thermodynamic and kinetic determination. 16 CO4 To evaluate the thermodynamic methods for real gases ad mixtures. 17		beam	s, collision cross sections, effectiveness of collisions, Potential energy							
activation-applications of ARRT to reactions between atoms and molecules, 15 time and true order-kinetic parameter evaluation. Factors determine the reaction rates in solution - primary salt effect and secondary salt effect, Homogeneous catalysis- acid- base catalysis-mechanism of acid base catalyzed reactions-Bronsted catalysis law, enzyme catalysis-Michelis- Menton catalysis. Menton catalysis. V UNIT-V: Kinetics of complex and fast reactions: Kinetics of complex reactions, reversible reactions, consecutive reactions, parallel reactions, chain reactions. Chain reactions-chain length, kinetics of H2 – Cl2 & H2 – Br2 reactions (Thermal and Photochemical reactions) - Rice Herzfeld mechanism. Study of fast reactions-relaxation methods- stemperature and pressure jump methods electric and magnetic field jump methods -stopped flow flash photolysis methods and pulse radiolysis. Kinetics of polymerization-free radical, cationic, anionic polymerization - Poly condensation. 15 Course Outcomes On completion of this course, students will be able 10 CO1 To explain the classical and statistical concepts of thermodynamics. 10 CO2 To compare and correlate the thermodynamic concepts to study the kinetics of chemical reactions. 10 CO3 To discuss the various thermodynamic methods for real gases ad mixtures. 10 CO4 To evaluate the thermodynamic methods for real gases ad mixtures. 10		surfac	ces. Transition state theory-evaluation of thermodynamic parameters of							
time and true order-kinetic parameter evaluation. Factors determine the reaction rates in solution - primary salt effect and secondary salt effect, Homogeneous catalysis- acid- base catalysis-mechanism of acid base catalyzed reactions-Bronsted catalysis law, enzyme catalysis-Michelis- Menton catalysis. V UNIT-V: Kinetics of complex and fast reactions: Kinetics of complex reactions, reversible reactions, consecutive reactions, parallel reactions, chain reactions. Chain reactions-chain length, kinetics of H ₂ – Cl ₂ & H ₂ – Br ₂ reactions (Thermal and Photochemical reactions) - Rice Herzfeld mechanism. Study of fast reactions-relaxation methods- temperature and pressure jump methods electric and magnetic field jump methods -stopped flow flash photolysis methods and pulse radiolysis. Kinetics of polymerization-free radical, cationic, anionic polymerization - Poly condensation. Course Outcomes Course Outcomes CO1 To explain the classical and statistical concepts of thermodynamics. CO3 To compare and correlate the thermodynamic concepts to study the kinetics of chemical reactions. CO3 To discuss the various thermodynamic and kinetic determination. CO4 To evaluate the thermodynamic and kinetic determination. CO4 To evaluate the thermodynamic methods for real gases ad mixtures.		activa	ation-applications of ARRT to reactions between atoms and molecules,	15						
reaction rates in solution - primary salt effect and secondary salt effect, Homogeneous catalysis- acid- base catalysis-mechanism of acid base catalyzed reactions-Bronsted catalysis law, enzyme catalysis-Michelis- Menton catalysis. V UNIT-V: Kinetics of complex and fast reactions: Kinetics of complex reactions, reversible reactions, consecutive reactions, parallel reactions, chain reactions. Chain reactions-chain length, kinetics of H ₂ - Cl ₂ & H ₂ - Br ₂ reactions (Thermal and Photochemical reactions) - Rice Herzfeld mechanism. Study of fast reactions-relaxation methods- temperature and pressure jump methods electric and magnetic field jump methods -stopped flow flash photolysis methods and pulse radiolysis. Kinetics of polymerization-free radical, cationic, anionic polymerization - Poly condensation. 15 Course Outcomes On completion of this course, students will be able 15 CO1 To explain the classical and statistical concepts of thermodynamics. 16 CO3 To discuss the various thermodynamic and kinetic determination. 17 CO4 To evaluate the thermodynamic methods for real gases ad mixtures. 16		time	and true order-kinetic parameter evaluation. Factors determine the							
Homogeneous catalysis- acid- base catalysis-mechanism of acid base catalyzed reactions-Bronsted catalysis law, enzyme catalysis-Michelis- Menton catalysis. V UNIT-V: Kinetics of complex and fast reactions: Kinetics of complex reactions, reversible reactions, consecutive reactions, parallel reactions, chain reactions. Chain reactions-chain length, kinetics of H2 – Cl2 & H2 – Br2 reactions (Thermal and Photochemical reactions) - Rice Herzfeld mechanism. Study of fast reactions-relaxation methods- temperature and pressure jump methods electric and magnetic field jump methods -stopped flow flash photolysis methods and pulse radiolysis. Kinetics of polymerization-free radical, cationic, anionic polymerization - Poly condensation. 15 Course Outcomes On completion of this course, students will be able On completion of this course, students will be able CO1 To explain the classical and statistical concepts of thermodynamics. CO2 To compare and correlate the thermodynamic concepts to study the kinetics of chemical reactions. CO3 To discuss the various thermodynamic and kinetic determination. CO4 To evaluate the thermodynamic methods for real gases ad mixtures.		reacti	on rates in solution - primary salt effect and secondary salt effect,							
catalyzed reactions-Bronsted catalysis law, enzyme catalysis-Michelis- Menton catalysis. V UNIT-V: Kinetics of complex and fast reactions: Kinetics of complex reactions, reversible reactions, consecutive reactions, parallel reactions, chain reactions. Chain reactions-chain length, kinetics of H2 – Cl2 & H2 – Br2 reactions (Thermal and Photochemical reactions) - Rice Herzfeld mechanism. Study of fast reactions-relaxation methods- temperature and pressure jump methods electric and magnetic field jump methods -stopped flow flash photolysis methods and pulse radiolysis. Kinetics of polymerization-free radical, cationic, anionic polymerization - Poly condensation. 15 Course Outcomes On completion of this course, students will be able 15 CO1 To explain the classical and statistical concepts of thermodynamics. To compare and correlate the thermodynamic concepts to study the kinetics of chemical reactions. 16 CO3 To discuss the various thermodynamic and kinetic determination. 17 CO4 To evaluate the thermodynamic methods for real gases ad mixtures. 16		Home	ogeneous catalysis- acid- base catalysis-mechanism of acid base							
Menton catalysis. Menton catalysis. V UNIT-V: Kinetics of complex and fast reactions: Kinetics of complex reactions, reversible reactions, consecutive reactions, parallel reactions, chain reactions. Chain reactions-chain length, kinetics of H2 – Cl2 & H2 – Br2 reactions (Thermal and Photochemical reactions) - Rice Herzfeld mechanism. Study of fast reactions-relaxation methods- temperature and pressure jump methods electric and magnetic field jump methods -stopped flow flash photolysis methods and pulse radiolysis. Kinetics of polymerization-free radical, cationic, anionic polymerization - Poly condensation. 15 Course Outcomes On completion of this course, students will be able To explain the classical and statistical concepts of thermodynamics. CO2 To compare and correlate the thermodynamic concepts to study the kinetics of chemical reactions. CO3 To discuss the various thermodynamic and kinetic determination. CO4 To evaluate the thermodynamic methods for real gases ad mixtures.		cataly	zed reactions-Bronsted catalysis law, enzyme catalysis-Michelis-							
V UNIT-V: Kinetics of complex and fast reactions: Kinetics of complex reactions, reversible reactions, consecutive reactions, parallel reactions, chain reactions. Chain reactions-chain length, kinetics of H ₂ – Cl ₂ & H ₂ – Br ₂ reactions (Thermal and Photochemical reactions) - Rice Herzfeld mechanism. Study of fast reactions-relaxation methods- temperature and pressure jump methods electric and magnetic field jump methods -stopped flow flash photolysis methods and pulse radiolysis. Kinetics of polymerization-free radical, cationic, anionic polymerization - Poly condensation. 15 Course Outcomes On completion of this course, students will be able 10 CO1 To explain the classical and statistical concepts of thermodynamics. To compare and correlate the thermodynamic concepts to study the kinetics of chemical reactions. CO3 To discuss the various thermodynamic and kinetic determination. CO4 CO4 To evaluate the thermodynamic methods for real gases ad mixtures.		on catalysis.								
reactions, reversible reactions, consecutive reactions, parallel reactions, chain reactions. Chain reactions-chain length, kinetics of H ₂ – Cl ₂ & H ₂ – H ₂ – Cl ₂ & H ₂ – Br ₂ reactions (Thermal and Photochemical reactions) - Rice Herzfeld mechanism. Study of fast reactions-relaxation methods- temperature and pressure jump methods electric and magnetic field jump methods -stopped flow flash photolysis methods and pulse radiolysis. Kinetics of polymerization-free radical, cationic, anionic polymerization - Poly condensation. 15 Course Outcomes Course Outcomes Course Outcomes Course Outcomes Course Outcomes Course Outcomes On completion of this course, students will be able Course Outcomes Course Outcomes Course Outcomes On completion of this course, students will be able Outcomes To explain the classical and statistical concepts of thermodynamics. Coopare and correlate the thermodynamic concepts to study the kinetics of chemical reactions. Coopare and correlate the thermodynamic and kinetic determination. Coopare and correlate the thermodynamic and kinetic determination. Coopare and correlate the thermodynamic and kinetic determination.	V	UNI	F-V: Kinetics of complex and fast reactions: Kinetics of complex							
chain reactions. Chain reactions-chain length, kinetics of H2 – Cl2 & H2 – Br2 reactions (Thermal and Photochemical reactions) - Rice Herzfeld mechanism. Study of fast reactions-relaxation methods- temperature and pressure jump methods electric and magnetic field jump methods -stopped flow flash photolysis methods and pulse radiolysis. Kinetics of polymerization-free radical, cationic, anionic polymerization - Poly condensation. 15 Course Outcomes Course Outcomes On completion of this course, students will be able CO1 To explain the classical and statistical concepts of thermodynamics. CO2 To compare and correlate the thermodynamic concepts to study the kinetics of chemical reactions. CO3 To discuss the various thermodynamic and kinetic determination. CO4 To evaluate the thermodynamic methods for real gases ad mixtures.		reacti	ons, reversible reactions, consecutive reactions, parallel reactions,							
Br2 reactions (Thermal and Photochemical reactions) - Rice Herzfeld mechanism. Study of fast reactions-relaxation methods- temperature and pressure jump methods electric and magnetic field jump methods -stopped flow flash photolysis methods and pulse radiolysis. Kinetics of polymerization-free radical, cationic, anionic polymerization - Poly condensation. 15 Course Outcomes Course Outcomes On completion of this course, students will be able CO1 To explain the classical and statistical concepts of thermodynamics. CO2 To compare and correlate the thermodynamic concepts to study the kinetics of chemical reactions. CO3 To discuss the various thermodynamic and kinetic determination. CO4 To evaluate the thermodynamic methods for real gases ad mixtures.		chain	reactions. Chain reactions-chain length, kinetics of $H_2 - Cl_2 \& H_2 -$							
mechanism. Study of fast reactions-relaxation methods- temperature and pressure jump methods electric and magnetic field jump methods -stopped flow flash photolysis methods and pulse radiolysis. Kinetics of polymerization-free radical, cationic, anionic polymerization - Poly condensation. 15 Course Outcomes Course Outcomes On completion of this course, students will be able CO1 To explain the classical and statistical concepts of thermodynamics. CO2 To compare and correlate the thermodynamic concepts to study the kinetics of chemical reactions. CO3 To discuss the various thermodynamic and kinetic determination. CO4 To evaluate the thermodynamic methods for real gases ad mixtures.		Br ₂ r	eactions (Thermal and Photochemical reactions) - Rice Herzfeld							
International study of fast reactions relaxation methods temperature and pressure jump methods electric and magnetic field jump methods -stopped flow flash photolysis methods and pulse radiolysis. Kinetics of polymerization-free radical, cationic, anionic polymerization - Poly condensation. Course Outcomes Course Outcomes On completion of this course, students will be able CO1 To explain the classical and statistical concepts of thermodynamics. CO2 To compare and correlate the thermodynamic concepts to study the kinetics of chemical reactions. CO3 To discuss the various thermodynamic and kinetic determination. CO4 To evaluate the thermodynamic methods for real gases ad mixtures.		mech	anism Study of fast reactions-relaxation methods- temperature and	15						
flow flash photolysis methods and pulse radiolysis. Kinetics of polymerization-free radical, cationic, anionic polymerization - Poly condensation. Course Outcomes Course Outcomes On completion of this course, students will be able CO1 To explain the classical and statistical concepts of thermodynamics. CO2 To compare and correlate the thermodynamic concepts to study the kinetics of chemical reactions. CO3 To discuss the various thermodynamic and kinetic determination. CO4 To evaluate the thermodynamic methods for real gases ad mixtures.		proces	unsili. Study of fast reactions relaxation methods temperature and	15						
now hash photolysis methods and pulse radiolysis. Kneuces of polymerization-free radical, cationic, anionic polymerization - Poly condensation. Course Outcomes Course Outcomes On completion of this course, students will be able CO1 To explain the classical and statistical concepts of thermodynamics. CO2 To compare and correlate the thermodynamic concepts to study the kinetics of chemical reactions. CO3 To discuss the various thermodynamic and kinetic determination. CO4 To evaluate the thermodynamic methods for real gases ad mixtures.		flow	flesh photolysis methods and mules radiolysis Vinetics of							
Course Outcomes Course Outcomes Course Outcomes On completion of this course, students will be able CO1 To explain the classical and statistical concepts of thermodynamics. CO2 To compare and correlate the thermodynamic concepts to study the kinetics of chemical reactions. CO3 To discuss the various thermodynamic and kinetic determination. CO4 To evaluate the thermodynamic methods for real gases ad mixtures.		110W	hash photorysis methods and pulse radiolysis. Kneucs of							
Course Outcomes Course Outcomes Course Outcomes On completion of this course, students will be able CO1 To explain the classical and statistical concepts of thermodynamics. CO2 To compare and correlate the thermodynamic concepts to study the kinetics of chemical reactions. CO3 To discuss the various thermodynamic and kinetic determination. CO4 To evaluate the thermodynamic methods for real gases ad mixtures.		polyn	nerization-free radical, cationic, anionic polymerization - Poly							
Course Outcomes Course Outcomes On completion of this course, students will be able CO1 To explain the classical and statistical concepts of thermodynamics. CO2 To compare and correlate the thermodynamic concepts to study the kinetics of chemical reactions. CO3 To discuss the various thermodynamic and kinetic determination. CO4 To evaluate the thermodynamic methods for real gases ad mixtures.		conde	ensation.							
Course OutcomesOn completion of this course, students will be ableCO1To explain the classical and statistical concepts of thermodynamics.CO2To compare and correlate the thermodynamic concepts to study the kinetics of chemical reactions.CO3To discuss the various thermodynamic and kinetic determination.CO4To evaluate the thermodynamic methods for real gases ad mixtures.			Course Outcomes							
CO1To explain the classical and statistical concepts of thermodynamics.CO2To compare and correlate the thermodynamic concepts to study the kinetics of chemical reactions.CO3To discuss the various thermodynamic and kinetic determination.CO4To evaluate the thermodynamic methods for real gases ad mixtures.CO5To compare the theories of reactions rates and fost reactions.	Cou Outco	irse omes	On completion of this course, students will be able							
CO2To compare and correlate the thermodynamic concepts to study the kinetics of chemical reactions.CO3To discuss the various thermodynamic and kinetic determination.CO4To evaluate the thermodynamic methods for real gases ad mixtures.CO5To compare the theories of meetings rates and fact meetings.	CC)1	To explain the classical and statistical concepts of thermodynamics.							
CO3 To discuss the various thermodynamic and kinetic determination. CO4 To evaluate the thermodynamic methods for real gases ad mixtures. CO5 To comment the theories of meetings rates and fost meetings.	CC	02	To compare and correlate the thermodynamic concepts to study the chemical reactions.	e kinetics of						
CO4 To evaluate the thermodynamic methods for real gases ad mixtures.	CC)3	To discuss the various thermodynamic and kinetic determination.							
CO5 To common the theories of reactions rates and fast reactions	CC)4	To evaluate the thermodynamic methods for real gases ad mixtures.							
10 compare the theories of reactions rates and rast reactions.	CC)5	To compare the theories of reactions rates and fast reactions.							

- 3. S.H. Maron and J.B. Lando, Fundamentals of Physical Chemistry, Macmillan Publishers, New York, 1974
- 4. K.B. Ytsiimiriski, "Kinetic Methods of Analysis", Pergamom Press, 1996.
- 5. Gurdeep Raj, Phase rule, Goel Publishing House, 2011.

Web Resources
01. https://nptel.ac.in/courses/104/103/104103112/
02. https://bit.ly/3tL3GdN

	Mapping with i rogramme Outcomes.									
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10
CO1	S	S	S	S	М	S	S	S	S	М
CO2	М	S	S	S	S	М	S	S	S	S
CO3	S	S	М	S	S	S	S	М	S	S
CO4	М	S	S	S	S	М	S	S	S	S
CO5	М	S	М	S	S	М	S	М	S	S

Mapping with Programme Outcomes:

3 - Strong, 2 - Medium, 1 - Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the	e Course	INORG	ANIC CH	IEMISTR	Y PRA	CTIC	AL		
Category	Core - 6	Year Semester	I r II	Credits	4	C C	ourse ode	2	32204203
Instruction	nal Hours	Lecture	Tutorial	Lab Practice	Total	CIA	Extern	al	Total
per week		-	1	4	5	25	75		100
L			Learning	g Objective	s				
To understand and enhance the visual observation as an analytical tool for the quantit								quantitative	
✓ To reca	all the principle	and theory	in nrenar	ing standar	d solutio	ns			
✓ To trai	n the students	for improv	ving their	skill in est	imating	the an	nount of	ion	accurately
present	in the solution	ior impro						1011	accaracery
Z To esti	mate metal ions	, present in	n the give	n solution a	ccurately	y with	out using	inst	truments.
🗷 To dete	ermine the amou	int of ions	, present ii	n a binary n	nixture a	ccurat	ely.		
			•				·		No. of
UNIT			Deta	ils				P	eriods for
01121									the Unit
IU	NIT-I: Analys	is of mixt	ure of cat	ions: Anal	ysis of a	mixtu	re of fou	r	
C	ations containin	g two con	nmon catio	ons and two	rare cat	tions.	Cations t	С	
b	e tested.								
G	roup-I :	W, Tl and	Pb.	1.01					
G	roup-II : S	Se, Te, Mo	, Cu, Bi ai	nd Cd.	TT				
	Froup-III : I	II, Ce, III, Zn Ni Co	Zr, V, Cr,	, Fe, 11 and	0.				
0	Froup-IV : 2	Cii, Ni, Co Ca. Ra and	and Min.						
	roup-VI · I	i and Mo	51.						
пЦ	NIT-II: Prepa	ration of	metal co	mplexes: H	Preparati	on of	inorgani	с	
C	omplexes:			r			8	-	
a.	. Preparation of	tristhioure	acopper(I)sulphate					
b	. Preparation of	potassium	trioxalate	chromate(III)				
c.	Preparation of	tetrammin	ecopper(I	I) sulphate					
d	. Preparation of	Reineck's	salt						
e.	Preparation of	hexathiou	reacopper	(I) chlorided	dihydrat	е			
f.	Preparation of	cis-Potass	ium tri oxa	alate diaqua	chromat	e(III)			
g L	. Preparation of	sodium tri	loxalatofe	rrate(III)					
	NIT III: Com	nexamou	ie Titroti) mirate				+	
	Estimation of	zinc nicke	l magnes	ium and ca	leium				
2	. Estimation of a	mixture of	metal ion	s-pH contro	ol. maski	ng and	1		
	demasking ag	ents.		- r	-,				
3	. Determination	of calcium	n and lead	in a mixtur	e (pH co	ontrol)			
4	. Determination	of manga	nese in the	presence o	of iron.				
5	. Determination	of nickel	in the pres	ence of iron	1.				
			Course	Outcomes	;				
Course Outcomes	On completion	on of this c	ourse, stuc	lents will;					
CO1	To identify th	ne anions a	and cations	s present in	a mixtu	e of sa	alts.		
000	To apply the	principles	of semi m	nicro qualita	tive ana	lysis to	o categor	ize	acid radicals
002	and basic rad	icals.		1		-	C		
CO3	To acquire the	ne qualitat	ive analyt	ical skills t	by select	ing su	itable co	nfir	matory tests
005	and spot tests	3.							
CO4	To choose	the appro	priate che	mical reag	ents for	the o	letection	of	anions and

	cations.
CO5	To synthesize coordination compounds in good quality.

01. A. JeyaRajendran, Microanalytical Techniques in Chemistry: Inorganic Qualitative Analysis, United global publishers, 2021.

02. V. V. Ramanujam, *Inorganic Semimicro Qualitative Analysis*; 3rded., The National Publishing Company, Chennai, 1974.

03. Vogel's Text book of Inorganic Qualitative Analysis, 4thed., ELBS, London.

References Books

(Latest editions, and the style as given below must be strictly adhered to)

01. G. Pass, and H. Sutcliffe, *Practical Inorganic Chemistry*; Chapman Hall, 1965.

02. W. G. Palmer, Experimental *Inorganic Chemistry*; Cambridge University Press, 1954.

Mapping with Programme Outcomes:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10
CO1	S	S	S	S	М	S	S	S	S	Μ
CO2	М	S	S	S	S	Μ	S	S	S	S
CO3	S	S	Μ	S	S	S	S	М	S	S
CO4	М	S	S	S	S	М	S	S	S	S
CO5	М	S	М	S	S	М	S	М	S	S

3 - Strong, 2 - Medium, 1 - Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of t	Title of the Course MEDICINAL CHEMISTRY								
		Vear	I				ourse		
Category	EC - III	Semester	· II	Credits	3	C	ode	23	32204204
Instructi	onal Hours	Lecture	Tutorial	Lab Practice	Total	CIA	Extern	nal	Total
per week	<u> </u>	1	4		5	25	75		100
			Learning	g Objective	S				
∠ To	study the chemis	stry behind	the devel	opment of p	pharmac	eutica	l materia	ls.	
	gain knowledge	on mechar	histics and a	d usage of (igs. iruge				
∠ To	familiarize with	the mode of	of action of	of diabetic a	gents an	d trea	tment of	diab	etes
∠ To	identify and app	ly the action	on of vario	ous antibioti	cs.	u uou		ando	
UNIT			Deta	ils				P	No. of eriods for the Unit
Ι	UNIT-I: Introd	uction to	receptor	s: Introduc	ction, ta	rgets,	Agonist	,	
	antagonist, partia	l agonist.	Receptors	, Receptor t	ypes, Tł	neories	s of Drug	5	
	– receptor in	nteraction,	Drug	synergism	n, Dru	g re	esistance	,	
	physicochemical	factors inf	luencing of	drug action.					
II	UNIT-II: Antik	piotics: In	troduction	n, Targets	of anti	biotic	s action	,	
	classification of	antibiotics	, enzyme-	based mech	hanism (of acti	on, SAR	-	
	of peniclins a	nd tetracy	clins, cli	nical appli	ication	of pe	enicillins	,	
	cephalosporin.Cu	irrent trend	is in antib	iotic therap	y.	1			
111	UNII-III: Antii	nypertens	ive agents	s and diur	etics: C	lassifi ticlog	cation of	[
	cardiovascular a	gents, inti antihumarti		to nyperte	isotion, e	nd m	y, types	2	
	of action of diur	anunyperu	amida H	udrochlorot	hiazida	ulu ili Amile	ride	L	
IV	UNIT-IV Antil	hvnertensi	ve agent	and diur	etics. C	Inceifi	cation of		
11	cardiovascular a	gents inti	oduction	to hyperte	nsion e	tiolog	v types	-	
	classification of	antihvperte	ensive age	ents, classif	ication a	and m	echanism	,	
	of action of diure	tics. Furos	emide. H	vdrochlorot	hiazide.	Amilo	oride.		
V	UNIT-V: Analg	esics, An	tipyretics	and Anti-	inflamn	natory	Drugs	:	
	Introduction, N	, Aechanism	of in	flammation	, class	ificati	on and	l	
	mechanism of	action a	nd parad	cetamol, I	buprofer	n, Di	clofenac	,	
	naproxen, indom	nethacin, p	henylbuta	azone and	meperid	ine. N	Aedicina	l	
	Chemistry of A	ntidiabetic	Agents	Introduction	n, Type	s of o	diabetics	,	
	Drugs used for	the treatm	ent, chem	ical classif	ication,	Mech	anism of	2	
	action, Treatmen	nt of diabe	tic mellit	us. Chemist	try of in	sulin,	sulfony	l	
	urea.								
			Course	Outcomes					
Course Outcom	es On completion	on of this co	ourse, stud	lents will be	e able				
CO1	Predict a drug	gs properti	es based o	n its structu	ire.	1		1	
CO2	Describe the	tactors	that affect	et its absorb	rption, made in	aistrib drug	ution, n design	netal	polism, and
	Explain the	relationsh	in betwee	anons to be	hemical	struc	ture and	its	therapeutic
CO3	properties.	101011311	P Served	in unug 5 C	nonnoal	Struc	uit uit	113	anorapourle
CO4	Designed to	give the k	nowledge	of differen	t theorie	es of d	lrug actio	ons a	at molecular

	level.
CO5	To identify different targets for the development of new drugs for the treatment of infectious and GIT.

Text Books (Latest Editions)
01. Wilson and Gisvold's textbook of organic medicinal and pharmaceutical chemistry,
02. Wilson, Charles Owens: Beale, John Marlowe; Block, John H, Lipincott William, 12th
edition, 2011.
03. Graham L. Patrick, An Introduction to Medicinal Chemistry, 5th edition, Oxford
University Press, 2013. Jayashree Ghosh, A text book of Pharmaceutical Chemistry, S.
Chand and Co. Ltd, 1999,1999 edn.
04. O. LeRoy, Natural and synthetic organic medicinal compounds, Ealemi, 1976.
05. S. Ashutosh Kar, Medicinal Chemistry, Wiley Eastern Limited, New Delhi, 1993, New
edn.
References Books
(Latest editions, and the style as given below must be strictly adhered to)
01. Foye's Princles of Medicinal Chemistry, Lipincott Williams, Seventh Edition, 2012
02. Burger's Medicinal Chemistry, Drug Discovery and Development, Donald J.
Abraham, David P. Rotella, Alfred Burger, Academic press, 2010.
03. Wilson and Gisvold's Textbook of Organic Medicinal and Pharmaceutical Chemistry,
John M. Beale Jr and John M. Block, Wolters Kluwer, 2011, 12 th edn.
04. P. Parimoo, A Textbook of Medical Chemistry, New Delhi: CBS Publishers.1995.
05. S. Ramakrishnan, K. G. Prasannan and R. Rajan, Textbook of Medical Biochemistry,
Hyderabad: Orient Longman. 3 rd edition, 2001.

Web Resources

1. https://www.ncbi.nlm.nih.gov/books/NBK482447/

2. https://training.seer.cancer.gov/treatment/chemotherapy/types.html

3. https://www.classcentral.com/course/swayam-medicinal-chemistry-12908

Mapping with Programme Outcomes:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10
CO1	S	S	S	S	М	S	S	S	S	Μ
CO2	М	S	S	S	S	М	S	S	S	S
CO3	S	S	М	S	S	S	S	М	S	S
CO4	М	S	S	S	S	М	S	S	S	S
CO5	М	S	М	S	S	Μ	S	М	S	S
			0	C 1	A 14	11	4 T			

3 – Strong, 2 – Medium , 1 - Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of th	Fitle of the Course GREEN CHEMISTRY											
Category	EC - III	Year Semester	I II	Credits	3		Course Code	23	32204205			
Instructio	nal Hours	Lecture	Tutorial	Lab Practice	Total	CIA	Extern	External Tota				
per week		4	1		5	25	75	5 100				
			Learning	g Objective	s							
 To a To a To a Prop Prop proc Prop chen 	 To discuss the principles of green chemistry. To propose green solutions for chemical energy storage and conversion Propose green solutions for industrial production of Petroleum and Petrochemicals. Propose solutions for pollution prevention in Industrial chemical and fuel production, Automotive industry and Shipping industries. Propose green solutions for industrial production of Surfactants, Organic and inorganic chemicals 											
UNIT			Deta	ils				Pe	No. of eriods for the Unit			
I U C te	J NIT-I: Introdu Chemistry. Lim erminologies, In rinciples of Gre	action- Ne itations/ c aternational en Chemis	ed for G of Green ll green cl try with e	reen Chem Chemistry nemistry org xamples.	nistry. G . Chem ganizatio	icals ical ons ai	of Green accidents, nd Twelve		15			
II U in g li ra d s	II UNIT-II: Choice of starting materials, reagents, catalysts and solvents in detail, Green chemistry in day today life. Designing green synthesis-green reagents: dimethyl carbonate. Green solvents: Water,Ionic liquids-criteria, general methods of preparation, effect on organic reaction. Supercritical carbon dioxide- properties, advantages, drawbacks and a few examples of organic reactions in scCO ₂ . Green extended and the set of the								15			
III U C si	J NIT-III: Envi Dxidation cataly tyrene aluminu upported photos	ronmental sts, Basic m chloric sensitizers.	pollution catalysts, le, polyn	, Green Ca Polymer su neric super	atalysis- upported : acid o	Acid l cata cataly	catalysts, lysts-Poly ysts, Poly	τ	15			
IV U h a A	JNIT-IV: Phase ydrogen pero nhydride forma Applications in c	e transfer o xide, cro ation, Elii organic syn	catalysis i own ethen nination thesis.	in green sy ers-esterific reaction, I	nthesis-o ation, Displace	oxida sapo ment	tion using nification, reaction.		15			
V U In In st	JNIT-V: Microstrumentation, nstrumentation, ynthesis and Ap	ro wave Principle Cavitatio plications.	induced e and n theory	l green application - Ultra	synthes s. Son sound	is-Int oche assis	roduction, mistry – ted green		15			
			Course	Outcomes	5							
Course Outcomes	On completion	on of this co	ourse, stud	lents will be	e able;							
C01	To recall the and in green	basic cher	nical tech	niques used	in conv	entio	nal indust	rial p	preparations			
CO2	To understan	d the vario	us technic	ques used in	n chemic	al inc	lustries an	d in	laboratory.			
CO3	To compare sources and r	the advar ton-renewa	ntages of able energ	organic re y sources.	actions	assis	ted by ren	newa	ible energy			
CO4	To apply the	e principle	s of PTC	, ionic liqu	id, micr	oway	ve and ult	rasoi	nic assisted			

		organic synthesis.
	CO5	To design and synthesize new organic compounds by green methods.
		Text Books (Latest Editions)
1.	Ahluwa	lia, V.K. and Kidwai, M.R. New Trends in Green Chemistry, Anamalaya Publishers,
	2005.	
2.	W. L.	McCabe, J.C. Smith and P. Harriott, Unit Operations of Chemical Engineering,
	7 th editio	on, McGraw-Hill, NewDelhi,2005.
3.	J. M. Sv	van and D. St. C. Black, Organometallics in Organic Synthesis, Chapman Hall, 1974.
4.	V. K.	Ahluwalia and R. Aggarwal, Organic Synthesis: Special Techniques, Narosa
	Publish	ing House, New Delhi,2001.
5.	A. K. D	e, Environmental Chemistry, New Age Publications, 2017.
		References Books
(L	atest edit	ions, and the style as given below must be strictly adhered to)
1.	Anastas	, P.T. and Warner, J.K. Oxford Green Chemistry -Theory and Practical, University
	Press, 1	998
2.	Matlack	x, A.S. Introduction to Green Chemistry, Marcel Dekker, 2001
3.	Cann, N	A.C. and Connely, M.E. Real-World Cases in Green Chemistry, American Chemical
	Society	, Washington, 2000
4.	Ryan, I	M.A. and Tinnesand, M., Introduction to Green Chemistry, American Chemical
	Society	Washington, 2002.
5.	Chandra	akanta Bandyopadhyay, An Insight into Green Chemistry, Books and Allied (P) Ltd,
	2019.	
		Web Resources
	01. https	s://www.organic-chemistry.org/
	02. http	s://www.studyorgo.com/summary.php

Mapping with Programme Outcomes:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10
CO1	S	S	S	S	М	S	S	S	S	Μ
CO2	М	S	S	S	S	М	S	S	S	S
CO3	S	S	М	S	S	S	S	М	S	S
CO4	Μ	S	S	S	S	М	S	S	S	S
CO5	М	S	М	S	S	М	S	М	S	S

3-Strong, 2-Medium, 1-Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of th	ne Course	BIO INC	ORGANI	C CHEMIS	STRY			
		Vear	T			C	ourse	
Category	EC - IV	Semeste	r II	Credits	3	C	ode	232204206
Instructio	onal Hours	Lecture	Tutorial	Lab Practice	Total	CIA	Extern	al Total
per week		4	1		5	25	75	100
Prerequ	isites	Basic k	nowledge	of chemist	ry		•	
			Learning	g Objective	S			
∠ To	understand the r	ole of trac	e elements	•	1 75	. 1	.1	
∠ To	understand the b	10logical s	significanc	e of iron, si	alpur. To	study	the	
tox « To	have knowledge	on diagno	S. ostic agents	2				
∞ To	discuss on vario	us metallo	enzymes i	nronerties				
2010		us metano	enzymes	properties.				No. of
UNIT			Deta	ils				Periods for
UNII			200					the Unit
Ι	Essential trace	element	s: Selectiv	e transport	t and st	orage	of metal	
	ions: Ferritin, '	Transferri	n and sid	orphores; S	Sodium	and p	otassium	
	transport, Cale	cium sig	nalling p	proteins. N	Aetalloe	nzyme	s: Zinc	
	enzymes-carbo	oxypeptida	se and ca	rbonic anh	ydrase.	Iron e	nzymes–	15
	catalase, perox	idase. Co	opper enz	zymes –	superoxi	de di	smutase,	
	Plast ocyanin,	Ceruloplas	smin, Tyro	sinase. Coe	enzymes	- Vita	min-B12	
	coenzymes.			**	1 1 .	1	1 1 .	
11	Transport Pro	teins: Ox	ygen carri	ers -Hemog	globin ai	nd myo	oglobin -	
	Structure and o	Lamondo	n Bonr El hin Diolo	ricel rodov	ng of C	J, NU	, CN- 10	
	Classification	rvtochrom	e a h and	gical leuox	system.	750 N	on_heme	15
	oxygen carriers	-Hemervth	rin and h	emocvanin	Iron-su	450.1v Inhur	on-neme	
1	oroteins- Rubred	oxin and F	Ferredoxin	- Structure :	and class	sificati	on	
III	Nitrogen fixa	tion-Intro	duction.	types (of nit	rogen	fixing	
	microorganisms.	Nitrogena	ase enzym	e - Metal o	clusters	in nitr	ogenase-	
1	redox property -	Dinitroge	en comple	xes transition	on meta	l com	olexes of	15
	dinitrogen - nitr	ogen fixa	tion via n	itride form	ation an	d redu	ction of	15
	dinitrogen to	ammoni	a. Photo	synthesis:	photo	system	-I and	
	photosystem-II-c	hlorophyl	ls structure	e and functi	on.			
IV	Metals in medi	icine: Me	tal Toxic	ity of Hg,	Cd, Zr	ı, Pb,	As, Sb.	
	Therapeutic Con	npounds:	Vanadium	Based Dia	betes Di	ugs; P	latinum-	
	Containing Anti	cancer A	gents.Chel	ation thera	py; Cai	icer tr	eatment.	15
	Diagnostic Agei	its: Tech	netium In	aging Age	ents; Ga	dolini	um MRI	
V7	Enzymon Introd	uction and	d proportio	ical magnel	atura an	dologo	fightion	
v	Enzyme kinetic	s free ene	ray of acti	vation and	the effe	uciass.	nication.	
	Michelis - Mer	ton equat	ion - Effe	ect of nH	temperat	ure or	enzvme	15
	reactions. Facto	rs contribi	iting to the	efficiency	of enzy	me.		
<u> </u>			Course	Outcomes				1
Course								
Outcome	s On completion	on of this c	ourse, stuc	lents will be	e able;			
CO1	The students	will be ab	le to analy	ses trace el	ements			
CO2	Students will	be able to	explain the	ne biologica	l redox	system	s.	
CO3	Students will	gain skill	in analyzi	ng the toxic	city in m	etals.		
CO4	Students will	have expe	erience in o	diagnosis.				
CO5	Learn about t	he nitroge	n fixation	and photos	ynthetic	mecha	nism.	

Text Books (Latest Editions)
1. Williams, D.R. –Introdution to Bioinorganic chemistry.
2. F.M. Fiabre and D.R. Williams– The Principles of Bioinorganic Chemistry, RoyolSoceity
of Chemistry, Monograph for Teachers-31
3. K.F. Purcell and Kotz., Inorganic chemistry, WB Saunders Co., USA.
4. G.N. Mugherjea and Arabinda Das, Elements of BioinorganicChemistry - 1993.
5. R. Gopalan, V. Ramalingam, Concise Coordination Chemistry, S. Chand, 2001.
References Books
(Latest editions, and the style as given below must be strictly adhered to)
1. M.Satake and Y.Mido, Bioinorganic Chemistry- Discovery PublishingHouse, New Delhi
(1996)
2. M.N. Hughes, 1982, The Inorganic Chemistry of Biological processes, II Edition, Wiley
London.
3. R. W. Hay, Bio Inorganic Chemistry, Ellis Horwood, 1987.
4. R. M. Roat-Malone, Bio Inorganic Chemistry, John Wiley, 2002.
5. T. M. Loehr, Iron carriers and Iron proteins, VCH, 1989.
Web Resources
1. https://www.pdfdrive.com/instant-notes-in-inorganic-chemistry- the-instant-notes-
chemistry-series-d162097454.html
2. https://www.pdfdrive.com/shriver-and-atkins-inorganic-chemistry- 5th-edition-
d161563417.html

Mapping with Programme Outcomes:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10
CO1	S	S	S	S	М	S	S	S	S	М
CO2	Μ	S	S	S	S	М	S	S	S	S
CO3	S	S	Μ	S	S	S	S	Μ	S	S
CO4	Μ	S	S	S	S	М	S	S	S	S
CO5	М	S	М	S	S	М	S	М	S	S
CO5	M	S	M	S	S	M	S	M	S	

3 – Strong, 2 – Medium , 1 - Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of t											
Categor	y EC - IV	Year Semester	I r II	Credits	3	C C	ourse ode		232204207		
Instruct	ional Hours	Lecture	Tutorial	Lab Practice	Total	CIA	Extern	nal	Total		
per weel	ζ	4	1		5	25	75		100		
Prerequ	uisites	Basic k	nowledge	of solid-sta	ate chem	nistry					
			Learnin	ng Objectiv	es						
& To & To & To & To & To	 To understand the crystal structure, growth methods and X-rayscattering. To explain the optical, dielectric and diffusion properties of crystals. To recognize the basis of semiconductors, superconductivity materialsand magnets. To study the synthesis, classification and applications of nanomaterials. To learn about the importance of materials used for renewable energy conversion. 										
UNIT			No. of Periods for the Unit								
I	stallogranhy, sy	mmetry -	unit cell g	and Miller	indices -	crystal	system	e _	for the Unit		
	Bravais lattices - equations-Bragg' crystallography. Electron charg applications.	ue cal ns. nd	15								
Π	Crystal growth metastable state. growth– Gel a equilibrium stabi temperature, solu Stockbarger,Czoo vapour transport. extinctions.	nd on gh n- cal ry	15								
ш	Properties of crystals: Optical studies - Electromagnetic spectrum (qualitative) refractive index – reflectance – transparency, translucency and opacity. Types of luminescence – photo-, electro-, and injection luminescence, LEDs – organic, Inorganic and polymer LED materials - Applications. Dielectric studies- Polarisation - electronic, ionic, orientation, and space charge polarisation. Effect of temperature. dielectric constant, dielectric loss. Types of dielectric breakdown–										
IV	Special Materials: Superconductivity: Meissner effect, Critical temperature and critical magnetic Field, Type I and II superconductors, BCS theory-Cooper pair, Applications. Soft and hard magnets – Domain theory Hysteresis Loop-Applications. Magneto and gian magneto resistance. Ferro, ferri and antiferromagnetic materials- applications, magnetic parameters for recording applications. Ferro-, Piezo-, and pyro electric materials – properties and applications. Shape memory Alloys-characteristics and applications, Non-linear optics- Second Harmonic Generators, mixing of Laser wavelengths by quartz, ruby and LiNbO3.										
V	Materials for 1 bilayer, bulk he conversion: lam cells, coordinati Ru(II) and Os(I splitting of wat water-splitting. generation of hy	Renewable eterojuncti nellar solid ion compo I) polypyr er, CO2 a Complexe vdrogen fro	e Energy on, polyn ls and thin ounds anch idyl comp and N2. N es of Rh om alcoho	Conversio ner, perovs n films, dye nored onto blexes. Pho Manganese , Ru, Pd l.	bn: Solar kite base e-sensitiz semicon- tochemic based pl and Pt	r Cells ed. So zed pho ductor cal acti- hoto sy - phot	: Organ lar ener oto volta surfaces vation a ystems f	ic, gy aic s - nd for cal	15		

	Course Outcomes								
Course	On completion of this course, students will be able;								
Outcomes									
CO1	To understand and recall the synthesis and characteristics of crystal structures,								
COI	semiconductors, magnets, nanomaterials and renewable energy materials.								
CO2	To integrate and assess the structure of different materials and their properties.								
CO3	To analyse and identify new materials for energy applications.								
	To explain the importance of crystal structures, piezoelectric and pyroelectric								
CO4	materials, nanomaterials, hard and soft magnets, superconductors, solar cells,								
	electrodes, LED uses, structures and synthesis.								
C05	To design and develop new materials with improved property for energy								
0.05	applications								

- 01. S. Mohan and V. Arjunan, Principles of Materials Science, MJPPublishers, 2016.
- 02. Arumugam, Materials Science, Anuradha Publications, 2007.
- 03. Giacavazzo et. al., Fundamentals of Crystallography, InternationalUnion of Crystallography. Oxford Science Publications, 2010
- 04. Woolfson, An Introduction to Crystallography, Cambridge UniversityPress, 2012.
- 05. James F. Shackelford and Madanapalli K. Muralidhara, Introduction to Materials Science for Engineers. 6th ed., PEARSON Press, 2007.

References Books

(Latest editions, and the style as given below must be strictly adhered to)

- 1. Suggested Readings 1. M.G. Arora, Solid State Chemistry, AnmolPublications, New Delhi, 2001.
- 2. R.K. Puri and V.K. Babbar, Solid State Physics, S Chand and CompanyLtd, 2001.
- 3. C. Kittel, Solid State Physics, John-Wiley and sons, NY, 1966.
- 4. H.P. Meyers, Introductory Solid State Physics, Viva Books PrivateLimited, 1998.
- 5. A.R. West, Solid State Chemistry and Applications, John-Wiley andsons, 1987.

Web Resources

1. http://xrayweb.chem.ou.edu/notes/symmetry.html.

- 2. <u>http://www.uptti.ac.in/classroom-content/data/unit%20cell.pdf</u>.
- 3. https://bit.ly/3QyVg2R

Mapping with Programme Outcomes:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10
CO1	S	S	S	S	М	S	S	S	S	Μ
CO2	М	S	S	S	S	М	S	S	S	S
CO3	S	S	М	S	S	S	S	Μ	S	S
CO4	М	S	S	S	S	Μ	S	S	S	S
CO5	М	S	М	S	S	М	S	М	S	S

3 – Strong, 2 – Medium , 1 - Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15

Title of th	Title of the Course DRUGS AND COSMETICS											
	-											
Category	SEC - II	Year	I	Credits	2	C	ourse	232	204208			
Instructio	nol Hours	Semester	11	Lah	Total		ode	<u> </u>				
per week	Juar Hours	Lecture	Tutorial	Practice	Total	CIA	Externa	al	Total			
per ween		3	-		3	25	75		100			
Prerequ	isites	Basic kn	owledge	of Drugs an	d Cosm	etics in	1 chemistr	У				
<i>~</i> То	understand the	briafly out	Learning	<u>g Objective</u>	S	orious	synthetic	moth	ods of			
dru	gs.	Uneny out	mes me t	acteria anu	viius, v	arious	synthetic	meur	.005 01			
∠ To	also deals with 1	miscellaneo	ous applic	ations drug	s and its	types.						
To learn about various therapeutic action of drugs												
🗷 To	learn the concep	ts of the co	mponents	s and chemi	cals use	d in th	e cosmetio	cs.				
æ To	know about asso	orted application	ations of	cosmetics.					<u> </u>			
			Data	:la				N Dom	√0. 0Í ioda for			
UNIT			fer	ious ior e Unit								
Ι	DRUGS, BACT	UGS. BACTERIA AND VIRUS:										
	Significance of o	gnificance of drugs - lethal dosage - bacteria - types of bacteria -										
2	ram positive - gram negative - examples - viruses - differences											
l	etween bacteria and virus - fungi - drawbacks of drugs.											
II	ANALGESICS, ANTIPYRETICS AND VITAMINS											
	Analgesics - typ	es - narcot	tic and n	on-narcotic	analges	ics - s	salicylate					
-	- ibuprofen (st	acetamol		9								
	structure not nec	, B12, C,		-								
	D, E vitamins on	ly (structur	e not nec	essary).		,	, , ,					
III	ANTIBIOTICS	AND ANT	IMALA	RIAL DRU	JGS							
	Antibiotics - t	ypes - teti	acycline	- rifomyc	in only	(struc	ture not					
	necessary) - me	chanism of	f drug act	tion (PABA	.) - antin	nalaria	l drugs -		9			
	quinine only (st	ructure not	necessar	y).			•					
IV	WASHING AN	D CLEAN	ING PO	WDER, PH	ENOY	LS						
	Preparation of v	washing po	owder -	cleaning p	owder -	whit	e, black,		9			
	yellow coloured	phenoyls.										
V	COSMETICS, S	SHAMPOO) AND F	ACEPOW	DER							
	Characteristics o	f good cos	metics -	demerits of	of artific	ial cos	smetics -		9			
1	preparation sham	poo, bathir	ng soap, b	asic compo	sition of	face p	owder.					
			Course	Outcomes								
Course Outcome	s	On com	pletion o	f this course	e, studen	ts will	be able;					
CO1	To recall the	e basic prin	nciples o	f the briefl	y outline	es the	bacteria ai	nd vir	us,			
	various synth	etic method	ds of drug	gs.	1	•						
CO2	To understan	d the deals	with mis	cellaneous a	applicati	ons dr	ugs and its	s type	2S.			
	To learn the	concepts of	the com	cuoii of artig	s chemic	als 1160	d in the c	nsmet	tics			
C04	To know abo	ut assorted	applicati	ons of cosm	netics.	a15 USC		Jamet				
005	To know about assorted applications of cosmetics.											

- 1. Pharmaceutical Chemistry Lakshmi
- 2. Medicinal Chemistry Gurdeep R. Chatwal

3. Textbook of cosmetics - Rajesh Kumar Nema, Kamal Singh Rathore, Balkrishna Dubey.

References Books (Latest editions, and the style as given below must be strictly adhered to) Medicinal Chemistry - Albert Burger

Mapping with Programme Outcomes:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10
CO1	S	S	S	S	М	S	S	S	S	Μ
CO2	Μ	S	S	S	S	М	S	S	S	S
CO3	S	S	М	S	S	S	S	М	S	S
CO4	Μ	S	S	S	S	М	S	S	S	S
CO5	М	S	Μ	S	S	Μ	S	М	S	S

3 - Strong, 2 - Medium, 1 - Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of	FOOD PRESERVATION											
Categor	y AECC - II	Year Semester	I II	Credits	2	C C	ourse ode	232204209				
Instruct	ional Hours	Lecture	Tutorial	Lab Practice	Total	CIA	Externa	al Total				
per weer	A	2	-		2	25	75	100				
Prereq	uisites	Basic kı	nowledg	e of food j	process	sing a	nd pres	ervation				
			Learning	g Objective	S							
æ To	o understand the	briefly outl	ines the f	ood process	sing met	hod.						
e To	b also deals with f	food preser	vation in	industry.								
e To	b learn about vario	bus food pro	oducts of	dairy and n	nilk proc	lucts.						
 I o learn the concepts of the Sea and meat and egg products. To know about assorted food quality and sensory evaluation of products. 												
<i>k</i> 10	S KHOW ADOUL ASSO	neu loou g	uanty and	a sensory ev	valuation	i oi pro	Jaucis.	No of				
TINIT			Deta	ils				Periods for				
UNII		Details										
Ι	Food Processing:											
	Aims of food scie	d science and technology – Constituents of food, food as a										
	source of energy.	y. Preparative operations in food industry - cleaning,										
	sorting and grading of food raw materials.											
II	Food Preserva	ood Preservation:										
	Commercial heat p	it preservation methods - sterilization, pasteurization and										
	Low_temperature	food process	U									
	and cold storage of	nly.	sing und p		nethous	Renne	crution					
III	Milk and Dairy	y Products	Preserva	ation:								
	Milk production	and qualit	y control	milk proces	ssing op	eration	is. Types	6				
	of milk and milk	r products -	- Butter n	naking – Ma	anufactu	re of ic	ce cream.					
IV	(a) Vegetabl	es and Fru	its and t	heir Produ	cts Pres	ervati	on:					
	Storage of veget	tables, vege	etable pro	ducts, stora	ge of fru	iits, fru	lit					
	products, fruit ju	ince produc	tion. I Eggs D	acomotion	_			6				
	Types of meat n	a roou and	cooking	of meat st	i Ange an	d proc	essing of					
	fish and fish proc	lucts. Egg a	and Egg r	or meat, su	Stage all	u proc	cosing of					
V	Food Ouality:		288 F	10000								
	Sensory Evaluati	on of Food	Quality -	Appearance	e factors	s - Tex	tural					
	factors - Flavour	factors - Q	uality fac	tors for con	sumer s	afety -		0				
	Nutritional qualit	ty - Sanitar	y Quality	- Food Safe	ety stand	lards.						
			Course	Outcomes								
Course Outcom	e es	On com	pletion o	f this course	e, studen	ts will	be able;					
CO1	To understan	d the brief	fly briefly	outlines th	e food p	rocess	ing metho	od.				
CO2	To also deals	s with food	preservat	tion in indu	stry.		<u> </u>					
CO3	To learn abo	ut various t	food prod	ucts of dair	y and m	ilk pro	ducts.					
CO4	To learn the	concepts of	the Sea a	and meat an	d egg pr	oducts						
CO5	To know about assorted food quality and sensory evaluation of products.											

- 1. Varzakas. T., Tzia. C., Handbook of Food Processing: Food Preservation, 2nd Edition, CRS Press, Delhi, 2015.
- ShakuntalManay. N., Food Facts and Principles, AA Press, Delhi, 2008.
 Desukumar., Outline of Dairy Technology, 2nd Edition, CBS Publication, Delhi, 2001.
- 4. Hui. H.Y., Ozgul.E., Handbook of Vegetable Preservation and Processing, 2nd Edition,

CRS Press, Nov. 2015.

 Huang. Y., Whittakers.D.A., Lacey. R.E., Automation for Food Engineering, Food Quality, Quantization and Process Control, 1st Edition, CRC Press, 2001.

References Books

(Latest editions, and the style as given below must be strictly adhered to)

1. Siva Sankar B., Food Processing and Preservation, Prentice Hall of India Private Limited.

- 2. Srivastava., Fruit Vegetable Preservation, Principles and Practices, CRS Press, 2014.
- 3. Varzakas.T., Tzia.C., Handbook of Food Processing: Food Safety, Quality and

Manufacturing Processes, CRC Press, 2015.

Mapping with Programme Outcomes:												
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10		
CO1	S	S	S	S	Μ	S	S	S	S	Μ		
CO2	М	S	S	S	S	М	S	S	S	S		
CO3	S	S	Μ	S	S	S	S	М	S	S		
CO4	М	S	S	S	S	М	S	S	S	S		
CO5	М	S	Μ	S	S	Μ	S	М	S	S		

3 – Strong, 2 – Medium , 1 - Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0